Search Results for "a-course-in-operator-theory-graduate-studies-in-mathematics"

A Course in Operator Theory

A Course in Operator Theory

  • Author: John B. Conway
  • Publisher: American Mathematical Soc.
  • ISBN: 0821820656
  • Category: Mathematics
  • Page: 372
  • View: 3671
DOWNLOAD NOW »
A new volume in the marquee series of the AMS, featuring broad mathematical topics written by some of the best and brightest that the mathematics field has to offer. All titles have attractive hardcovers and market-oriented prices.

A Course in Abstract Analysis

A Course in Abstract Analysis

  • Author: John B. Conway
  • Publisher: American Mathematical Soc.
  • ISBN: 0821890832
  • Category: Mathematics
  • Page: 367
  • View: 9609
DOWNLOAD NOW »
This book covers topics appropriate for a first-year graduate course preparing students for the doctorate degree. The first half of the book presents the core of measure theory, including an introduction to the Fourier transform. This material can easily be covered in a semester. The second half of the book treats basic functional analysis and can also be covered in a semester. After the basics, it discusses linear transformations, duality, the elements of Banach algebras, and C*-algebras. It concludes with a characterization of the unitary equivalence classes of normal operators on a Hilbert space. The book is self-contained and only relies on a background in functions of a single variable and the elements of metric spaces. Following the author's belief that the best way to learn is to start with the particular and proceed to the more general, it contains numerous examples and exercises.

A Course in Functional Analysis

A Course in Functional Analysis

  • Author: John B. Conway
  • Publisher: Springer Science & Business Media
  • ISBN: 1475738285
  • Category: Mathematics
  • Page: 406
  • View: 1678
DOWNLOAD NOW »
Functional analysis has become a sufficiently large area of mathematics that it is possible to find two research mathematicians, both of whom call themselves functional analysts, who have great difficulty understanding the work of the other. The common thread is the existence of a linear space with a topology or two (or more). Here the paths diverge in the choice of how that topology is defined and in whether to study the geometry of the linear space, or the linear operators on the space, or both. In this book I have tried to follow the common thread rather than any special topic. I have included some topics that a few years ago might have been thought of as specialized but which impress me as interesting and basic. Near the end of this work I gave into my natural temptation and included some operator theory that, though basic for operator theory, might be considered specialized by some functional analysts.

A Short Course on Spectral Theory

A Short Course on Spectral Theory

  • Author: William Arveson
  • Publisher: Springer Science & Business Media
  • ISBN: 0387215182
  • Category: Mathematics
  • Page: 142
  • View: 7608
DOWNLOAD NOW »
This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative K-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here.

Functional Analysis

Functional Analysis

An Introduction

  • Author: Yuli Eidelman,Vitali D. Milman,Antonis Tsolomitis
  • Publisher: American Mathematical Soc.
  • ISBN: 0821836463
  • Category: Mathematics
  • Page: 322
  • View: 4328
DOWNLOAD NOW »
The goal of this textbook is to provide an introduction to the methods and language of functional analysis, including Hilbert spaces, Fredholm theory for compact operators, and spectral theory of self-adjoint operators. It also presents the basic theorems and methods of abstract functional analysis and a few applications of these methods to Banach algebras and the theory of unbounded self-adjoint operators. The text corresponds to material for two semester courses (Part I and Part II, respectively), and it is as self-contained as possible. The only prerequisites for the first part are minimal amounts of linear algebra and calculus. However, for the second course (Part II), it is useful to have some knowledge of topology and measure theory. Each chapter is followed by numerous exercises, whose solutions are given at the end of the book.

An Invitation to Operator Theory

An Invitation to Operator Theory

  • Author: Yuri A. Abramovich,Charalambos D. Aliprantis
  • Publisher: American Mathematical Soc.
  • ISBN: 0821821466
  • Category: Mathematics
  • Page: 530
  • View: 9727
DOWNLOAD NOW »
This book offers a comprehensive and reader-friendly exposition of the theory of linear operators on Banach spaces and Banach lattices. Abramovich and Aliprantis give a unique presentation that includes many new developments in operator theory and also draws together results that are spread over the vast literature. For instance, invariant subspaces of positive operators and the Daugavet equation are presented in monograph form for the first time. The authors keep the discussion self-contained and use exercises to achieve this goal. The book contains over 600 exercises to help students master the material developed in the text. The exercises are of varying degrees of difficulty and play an important and useful role in the exposition. They help to free the proofs of the main results of some technical details but provide students with accurate and complete accounts of how such details ought to be worked out.The exercises also contain a considerable amount of additional material that includes many well-known results whose proofs are not readily available elsewhere. The companion volume, ""Problems in Operator Theory"", also by Abramovich and Aliprantis, is available from the AMS as Volume 51 in the ""Graduate Studies in Mathematics"" series, and it contains complete solutions to all exercises in ""An Invitation to Operator Theory"". The solutions demonstrate explicitly technical details in the proofs of many results in operator theory, providing the reader with rigorous and complete accounts of such details. Finally, the book offers a considerable amount of additional material and further developments.By adding extra material to many exercises, the authors have managed to keep the presentation as self-contained as possible. The best way of learning mathematics is by doing mathematics, and the book ""Problems in Operator Theory"" will help achieve this goal. Prerequisites to each book are the standard introductory graduate courses in real analysis, general topology, measure theory, and functional analysis. ""An Invitation to Operator Theory"" is suitable for graduate or advanced courses in operator theory, real analysis, integration theory, measure theory, function theory, and functional analysis. ""Problems in Operator Theory"" is a very useful supplementary text in the above areas. Both books will be of great interest to researchers and students in mathematics, as well as in physics, economics, finance, engineering, and other related areas, and will make an indispensable reference tool.

Operator Theory in Function Spaces

Operator Theory in Function Spaces

  • Author: Kehe Zhu
  • Publisher: American Mathematical Soc.
  • ISBN: 0821839659
  • Category: Mathematics
  • Page: 348
  • View: 4050
DOWNLOAD NOW »
This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.

Linear Operator Theory in Engineering and Science

Linear Operator Theory in Engineering and Science

  • Author: Arch W. Naylor,George R. Sell
  • Publisher: Springer Science & Business Media
  • ISBN: 9780387950013
  • Category: Mathematics
  • Page: 624
  • View: 8339
DOWNLOAD NOW »
This book is a unique introduction to the theory of linear operators on Hilbert space. The authors' goal is to present the basic facts of functional analysis in a form suitable for engineers, scientists, and applied mathematicians. Although the Definition-Theorem-Proof format of mathematics is used, careful attention is given to motivation of the material covered and many illustrative examples are presented. First published in 1971, Linear Operator in Engineering and Sciences has since proved to be a popular and very useful textbook.

C*-Algebras and Operator Theory

C*-Algebras and Operator Theory

  • Author: Gerald J. Murphy
  • Publisher: Academic Press
  • ISBN: 0080924964
  • Category: Mathematics
  • Page: 296
  • View: 4273
DOWNLOAD NOW »
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

Problems in Operator Theory

Problems in Operator Theory

  • Author: Yuri A. Abramovich,Charalambos D. Aliprantis
  • Publisher: American Mathematical Soc.
  • ISBN: 0821821474
  • Category: Mathematics
  • Page: 386
  • View: 1890
DOWNLOAD NOW »
This is one of the few books available in the literature that contains problems devoted entirely to the theory of operators on Banach spaces and Banach lattices. The book contains complete solutions to the more than 600 exercises in the companion volume, An Invitation to Operator Theory, Volume 50 in the AMS series Graduate Studies in Mathematics, also by Abramovich and Aliprantis. The exercises and solutions contained in this volume serve many purposes. First, they provide an opportunity to the readers to test their understanding of the theory. Second, they are used to demonstrate explicitly technical details in the proofs of many results in operator theory, providing the reader with rigorous and complete accounts of such details. Third, the exercises include many well-known results whose proofs are not readily available elsewhere. Finally, the book contains a considerable amount of additional material and further developments. By adding extra material to many exercises the authors have managed to keep the presentation as self-contained as possible. The book can be very useful as a supplementary text to graduate courses in operator theory, real analysis, function theory, integration theory, measure theory, and functional analysis. It will also make a nice reference tool for researchers in physics, engineering, economics, and finance.

The Theory of Subnormal Operators

The Theory of Subnormal Operators

  • Author: John B. Conway
  • Publisher: American Mathematical Soc.
  • ISBN: 0821815369
  • Category: Mathematics
  • Page: 436
  • View: 1857
DOWNLOAD NOW »
'In a certain sense, subnormal operators were introduced too soon because the theory of function algebras and rational approximation was also in its infancy and could not be properly used to examine this class of operators. The progress in the theory of subnormal operators that has come about during the last several years grew out of applying the results of rational approximation' - from the Preface.This book is the successor to the author's 1981 book on the same subject. In addition to reflecting the great strides in the development of subnormal operator theory since the first book, the present work is oriented toward rational functions rather than polynomials. Although the book is a research monograph, it has many of the traits of a textbook, including exercises. The book requires background in function theory and functional analysis, but is otherwise fairly self-contained. The first few chapters cover the basics about subnormal operator theory and present a study of analytic functions on the unit disk. Other topics included are: some results on hyponormal operators, an exposition of rational approximation interspersed with applications to operator theory, a study of weak-star rational approximation, a set of results that can be termed structure theorems for subnormal operators, and a proof that analytic bounded point evaluations exist.

A Course in Approximation Theory

A Course in Approximation Theory

  • Author: Elliott Ward Cheney,William Allan Light
  • Publisher: American Mathematical Soc.
  • ISBN: 0821847988
  • Category: Mathematics
  • Page: 359
  • View: 1702
DOWNLOAD NOW »
This textbook is designed for graduate students in mathematics, physics, engineering, and computer science. Its purpose is to guide the reader in exploring contemporary approximation theory. The emphasis is on multi-variable approximation theory, i.e., the approximation of functions in several variables, as opposed to the classical theory of functions in one variable. Most of the topics in the book, heretofore accessible only through research papers, are treated here from the basics to the currently active research, often motivated by practical problems arising in diverse applications such as science, engineering, geophysics, and business and economics. Among these topics are projections, interpolation paradigms, positive definite functions, interpolation theorems of Schoenberg and Micchelli, tomography, artificial neural networks, wavelets, thin-plate splines, box splines, ridge functions, and convolutions. An important and valuable feature of the book is the bibliography of almost 600 items directing the reader to important books and research papers. There are 438 problems and exercises scattered through the book allowing the student reader to get a better understanding of the subject.

Analysis

Analysis

  • Author: Elliott H. Lieb,Michael Loss
  • Publisher: American Mathematical Soc.
  • ISBN: 0821827839
  • Category: Mathematics
  • Page: 346
  • View: 9683
DOWNLOAD NOW »
This is an excellent textbook on analysis and it has several unique features: Proofs of heat kernel estimates, the Nash inequality and the logarithmic Sobolev inequality are topics that are seldom treated on the level of a textbook. Best constants in several inequalities, such as Young's inequality and the logarithmic Sobolev inequality, are also included. A thorough treatment of rearrangement inequalities and competing symmetries appears in book form for the first time. There is an extensive treatment of potential theory and its applications to quantum mechanics, which, again, is unique at this level. Uniform convexity of $L^p$ space is treated very carefully. The presentation of this important subject is highly unusual for a textbook. All the proofs provide deep insights into the theorems. This book sets a new standard for a graduate textbook in analysis. --Shing-Tung Yau, Harvard University For some number of years, Rudin's ``Real and Complex'', and a few other analysis books, served as the canonical choice for the book to use, and to teach from, in a first year grad analysis course. Lieb-Loss offers a refreshing alternative: It begins with a down-to-earth intro to measure theory, $L^p$ and all that ... It aims at a wide range of essential applications, such as the Fourier transform, and series, inequalities, distributions, and Sobolev spaces--PDE, potential theory, calculus of variations, and math physics (Schrodinger's equation, the hydrogen atom, Thomas-Fermi theory ... to mention a few). The book should work equally well in a one-, or in a two-semester course. The first half of the book covers the basics, and the rest will be great for students to have, regardless of whether or not it gets to be included in a course. --Palle E. T. Jorgensen, University of Iowa

Fourier Analysis

Fourier Analysis

  • Author: Javier Duoandikoetxea Zuazo
  • Publisher: American Mathematical Soc.
  • ISBN: 9780821883846
  • Category: Mathematics
  • Page: 222
  • View: 4046
DOWNLOAD NOW »

A First Course in Analysis

A First Course in Analysis

  • Author: John B. Conway
  • Publisher: Cambridge University Press
  • ISBN: 1107173140
  • Category: Mathematics
  • Page: 375
  • View: 6620
DOWNLOAD NOW »
This rigorous textbook is intended for a year-long analysis or advanced calculus course for advanced undergraduate or beginning graduate students. Starting with detailed, slow-paced proofs that allow students to acquire facility in reading and writing proofs, it clearly and concisely explains the basics of differentiation and integration of functions of one and several variables, and covers the theorems of Green, Gauss, and Stokes. Minimal prerequisites are assumed, and relevant linear algebra topics are reviewed right before they are needed, making the material accessible to students from diverse backgrounds. Abstract topics are preceded by concrete examples to facilitate understanding, for example, before introducing differential forms, the text examines low-dimensional examples. The meaning and importance of results are thoroughly discussed, and numerous exercises of varying difficulty give students ample opportunity to test and improve their knowledge of this difficult yet vital subject.

Riemann Surfaces by Way of Complex Analytic Geometry

Riemann Surfaces by Way of Complex Analytic Geometry

  • Author: Dror Varolin
  • Publisher: American Mathematical Soc.
  • ISBN: 0821853694
  • Category: Mathematics
  • Page: 236
  • View: 2191
DOWNLOAD NOW »
This book establishes the basic function theory and complex geometry of Riemann surfaces, both open and compact. Many of the methods used in the book are adaptations and simplifications of methods from the theories of several complex variables and complex analytic geometry and would serve as excellent training for mathematicians wanting to work in complex analytic geometry. After three introductory chapters, the book embarks on its central, and certainly most novel, goal of studying Hermitian holomorphic line bundles and their sections. Among other things, finite-dimensionality of spaces of sections of holomorphic line bundles of compact Riemann surfaces and the triviality of holomorphic line bundles over Riemann surfaces are proved, with various applications. Perhaps the main result of the book is Hormander's Theorem on the square-integrable solution of the Cauchy-Riemann equations. The crowning application is the proof of the Kodaira and Narasimhan Embedding Theorems for compact and open Riemann surfaces. The intended reader has had first courses in real and complex analysis, as well as advanced calculus and basic differential topology (though the latter subject is not crucial). As such, the book should appeal to a broad portion of the mathematical and scientific community. This book is the first to give a textbook exposition of Riemann surface theory from the viewpoint of positive Hermitian line bundles and Hormander $\bar \partial$ estimates. It is more analytical and PDE oriented than prior texts in the field, and is an excellent introduction to the methods used currently in complex geometry, as exemplified in J. P. Demailly's online but otherwise unpublished book ``Complex analytic and differential geometry.'' I used it for a one quarter course on Riemann surfaces and found it to be clearly written and self-contained. It not only fills a significant gap in the large textbook literature on Riemann surfaces but is also rather indispensible for those who would like to teach the subject from a differential geometric and PDE viewpoint. --Steven Zelditch

Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians

  • Author: Leon Armenovich Takhtadzhi͡an
  • Publisher: American Mathematical Soc.
  • ISBN: 0821846302
  • Category: Mathematics
  • Page: 387
  • View: 2334
DOWNLOAD NOW »
This book provides a comprehensive treatment of quantum mechanics from a mathematics perspective and is accessible to mathematicians starting with second-year graduate students. It addition to traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin, and it introduces the reader to functional methods in quantum mechanics. This includes the Feynman path integral approach to quantum mechanics, integration in functional spaces, the relation between Feynman and Wiener integrals, Gaussian integration and regularized determinants of differential operators, fermion systems and integration over anticommuting (Grassmann) variables, supersymmetry and localization in loop spaces, and supersymmetric derivation of the Atiyah-Singer formula for the index of the Dirac operator. Prior to this book, mathematicians could find these topics only in physics textbooks and in specialized literature. This book is written in a concise style with careful attention to precise mathematics formulation of methods and results.Numerous problems, from routine to advanced, help the reader to master the subject. In addition to providing a fundamental knowledge of quantum mechanics, this book could also serve as a bridge for studying more advanced topics in quantum physics, among them quantum field theory. Prerequisites include standard first-year graduate courses covering linear and abstract algebra, topology and geometry, and real and complex analysis.

A Course in Algebra

A Course in Algebra

  • Author: Ėrnest Borisovich Vinberg
  • Publisher: American Mathematical Soc.
  • ISBN: 9780821834138
  • Category: Mathematics
  • Page: 511
  • View: 3277
DOWNLOAD NOW »
This is a comprehensive textbook on modern algebra written by an internationally renowned specialist. It covers material traditionally found in advanced undergraduate and basic graduate courses and presents it in a lucid style. The author includes almost no technically difficult proofs, and reflecting his point of view on mathematics, he tries wherever possible to replace calculations and difficult deductions with conceptual proofs and to associate geometric images to algebraic objects. The effort spent on the part of students in absorbing these ideas will pay off when they turn to solving problems outside of this textbook.Another important feature is the presentation of most topics on several levels, allowing students to move smoothly from initial acquaintance with the subject to thorough study and a deeper understanding. Basic topics are included, such as algebraic structures, linear algebra, polynomials, and groups, as well as more advanced topics, such as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. Some applications of linear algebra and group theory to physics are discussed. The book is written with extreme care and contains over 200 exercises and 70 figures. It is ideal as a textbook and also suitable for independent study for advanced undergraduates and graduate students.

Elementary Functional Analysis

Elementary Functional Analysis

  • Author: Barbara MacCluer
  • Publisher: Springer Science & Business Media
  • ISBN: 0387855297
  • Category: Mathematics
  • Page: 208
  • View: 9613
DOWNLOAD NOW »
Functional analysis arose in the early twentieth century and gradually, conquering one stronghold after another, became a nearly universal mathematical doctrine, not merely a new area of mathematics, but a new mathematical world view. Its appearance was the inevitable consequence of the evolution of all of nineteenth-century mathematics, in particular classical analysis and mathematical physics. Its original basis was formed by Cantor’s theory of sets and linear algebra. Its existence answered the question of how to state general principles of a broadly interpreted analysis in a way suitable for the most diverse situations. A.M. Vershik ([45], p. 438). This text evolved from the content of a one semester introductory course in fu- tional analysis that I have taught a number of times since 1996 at the University of Virginia. My students have included ?rst and second year graduate students prep- ing for thesis work in analysis, algebra, or topology, graduate students in various departments in the School of Engineering and Applied Science, and several und- graduate mathematics or physics majors. After a ?rst draft of the manuscript was completed, it was also used for an independent reading course for several und- graduates preparing for graduate school.

Banach Algebra Techniques in the Theory of Toeplitz Operators

Banach Algebra Techniques in the Theory of Toeplitz Operators

  • Author: Ronald G. Douglas
  • Publisher: American Mathematical Soc.
  • ISBN: 9780821888643
  • Category: Mathematics
  • Page: 53
  • View: 8900
DOWNLOAD NOW »