Search Results for "applied-multivariate-statistical-analysis"

Applied Multivariate Statistical Analysis: Pearson New International Edition

Applied Multivariate Statistical Analysis: Pearson New International Edition

  • Author: Richard A. Johnson,Dean W. Wichern
  • Publisher: Pearson Higher Ed
  • ISBN: 1292037571
  • Category: Psychology
  • Page: 776
  • View: 1576
DOWNLOAD NOW »
For courses in Multivariate Statistics, Marketing Research, Intermediate Business Statistics, Statistics in Education, and graduate-level courses in Experimental Design and Statistics. Appropriate for experimental scientists in a variety of disciplines, this market-leading text offers a readable introduction to the statistical analysis of multivariate observations. Its primary goal is to impart the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Ideal for a junior/senior or graduate level course that explores the statistical methods for describing and analyzing multivariate data, the text assumes two or more statistics courses as a prerequisite.

Applied Multivariate Statistical Analysis

Applied Multivariate Statistical Analysis

  • Author: Wolfgang Karl Härdle,Léopold Simar
  • Publisher: Springer
  • ISBN: 3662451719
  • Category: Business & Economics
  • Page: 580
  • View: 880
DOWNLOAD NOW »
Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners. All chapters include practical exercises that highlight applications in different multivariate data analysis fields. All of the examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate Statistical Analysis offers the following new features: A new chapter on Variable Selection (Lasso, SCAD and Elastic Net) All exercises are supplemented by R and MATLAB code that can be found on www.quantlet.de. The practical exercises include solutions that can be found in Härdle, W. and Hlavka, Z., Multivariate Statistics: Exercises and Solutions. Springer Verlag, Heidelberg.

Applied Multivariate Statistical Concepts

Applied Multivariate Statistical Concepts

  • Author: Debbie L. Hahs-Vaughn
  • Publisher: Taylor & Francis
  • ISBN: 1317811372
  • Category: Psychology
  • Page: 648
  • View: 4909
DOWNLOAD NOW »
More comprehensive than other texts, this new book covers the classic and cutting edge multivariate techniques used in today’s research. Ideal for courses on multivariate statistics/analysis/design, advanced statistics or quantitative techniques taught in psychology, education, sociology, and business, the book also appeals to researchers with no training in multivariate methods. Through clear writing and engaging pedagogy and examples using real data, Hahs-Vaughn walks students through the most used methods to learn why and how to apply each technique. A conceptual approach with a higher than usual text-to-formula ratio helps reader’s master key concepts so they can implement and interpret results generated by today’s sophisticated software. Annotated screenshots from SPSS and other packages are integrated throughout. Designed for course flexibility, after the first 4 chapters, instructors can use chapters in any sequence or combination to fit the needs of their students. Each chapter includes a ‘mathematical snapshot’ that highlights the technical components of each procedure, so only the most crucial equations are included. Highlights include: -Outlines, key concepts, and vignettes related to key concepts preview what’s to come in each chapter -Examples using real data from education, psychology, and other social sciences illustrate key concepts -Extensive coverage of assumptions including tables, the effects of their violation, and how to test for each technique -Conceptual, computational, and interpretative problems mirror the real-world problems students encounter in their studies and careers -A focus on data screening and power analysis with attention on the special needs of each particular method -Instructions for using SPSS via screenshots and annotated output along with HLM, Mplus, LISREL, and G*Power where appropriate, to demonstrate how to interpret results -Templates for writing research questions and APA-style write-ups of results which serve as models -Propensity score analysis chapter that demonstrates the use of this increasingly popular technique -A review of matrix algebra for those who want an introduction (prerequisites include an introduction to factorial ANOVA, ANCOVA, and simple linear regression, but knowledge of matrix algebra is not assumed) -www.routledge.com/9780415842365 provides the text’s datasets preformatted for use in SPSS and other statistical packages for readers, as well as answers to all chapter problems, Power Points, and test items for instructors

Handbook of Applied Multivariate Statistics and Mathematical Modeling

Handbook of Applied Multivariate Statistics and Mathematical Modeling

  • Author: Howard E.A. Tinsley,Steven D. Brown
  • Publisher: Academic Press
  • ISBN: 9780080533568
  • Category: Mathematics
  • Page: 721
  • View: 909
DOWNLOAD NOW »
Multivariate statistics and mathematical models provide flexible and powerful tools essential in most disciplines. Nevertheless, many practicing researchers lack an adequate knowledge of these techniques, or did once know the techniques, but have not been able to keep abreast of new developments. The Handbook of Applied Multivariate Statistics and Mathematical Modeling explains the appropriate uses of multivariate procedures and mathematical modeling techniques, and prescribe practices that enable applied researchers to use these procedures effectively without needing to concern themselves with the mathematical basis. The Handbook emphasizes using models and statistics as tools. The objective of the book is to inform readers about which tool to use to accomplish which task. Each chapter begins with a discussion of what kinds of questions a particular technique can and cannot answer. As multivariate statistics and modeling techniques are useful across disciplines, these examples include issues of concern in biological and social sciences as well as the humanities.

Applied Multivariate Statistics for the Social Sciences

Applied Multivariate Statistics for the Social Sciences

  • Author: James Paul Stevens
  • Publisher: Taylor & Francis
  • ISBN: 0805859012
  • Category: Social Science
  • Page: 651
  • View: 4641
DOWNLOAD NOW »
This best-selling text is written for those who use, rather than develop statistical methods. Dr. Stevens focuses on a conceptual understanding of the material rather than on proving results. Helpful narrative and numerous examples enhance understanding and a chapter on matrix algebra serves as a review. Annotated printouts from SPSS and SAS indicate what the numbers mean and encourage interpretation of the results. In addition to demonstrating how to use these packages, the author stresses the importance of checking the data, assessing the assumptions, and ensuring adequate sample size by providing guidelines so that the results can be generalized. The book is noted for its extensive applied coverage of MANOVA, its emphasis on statistical power, and numerous exercises including answers to half. The new edition features: New chapters on Hierarchical Linear Modeling (Ch. 15) and Structural Equation Modeling (Ch. 16) New exercises that feature recent journal articles to demonstrate the actual use of multiple regression (Ch. 3), MANOVA (Ch. 5), and repeated measures (Ch. 13) A new appendix on the analysis of correlated observations (Ch. 6) Expanded discussions on obtaining non-orthogonal contrasts in repeated measures designs with SPSS and how to make the identification of cell ID easier in log linear analysis in 4 or 5 way designs Updated versions of SPSS (15.0) and SAS (8.0) are used throughout the text and introduced in chapter 1 A book website with data sets and more. Ideal for courses on multivariate statistics found in psychology, education, sociology, and business departments, the book also appeals to practicing researchers with little or no training in multivariate methods. Prerequisites include a course on factorial ANOVA and covariance. Working knowledge of matrix algebra is not assumed.

Topics in Applied Multivariate Analysis

Topics in Applied Multivariate Analysis

  • Author: D. M. Hawkins
  • Publisher: Cambridge University Press
  • ISBN: 9780521243681
  • Category: Mathematics
  • Page: 362
  • View: 857
DOWNLOAD NOW »
Multivariate methods are employed widely in the analysis of experimental data but are poorly understood by those users who are not statisticians. This is because of the wide divergence between the theory and practice of multivariate methods. This book provides concise yet thorough surveys of developments in multivariate statistical analysis and gives statistically sound coverage of the subject. The contributors are all experienced in the theory and practice of multivariate methods and their aim has been to emphasize the major features from the point of view of applicability and to indicate the limitations and conditions of the techniques. Professional statisticians wanting to improve their background in applicable methods, users of high-level statistical methods wanting to improve their background in fundamentals, and graduate students of statistics will all find this volume of value and use.

Applied Multivariate Statistics with SAS Software, Second Edition

Applied Multivariate Statistics with SAS Software, Second Edition

  • Author: Ravindra Khattree,Dayanand N. Naik
  • Publisher: SAS Institute
  • ISBN: 9781590476390
  • Category: Computers
  • Page: 368
  • View: 5716
DOWNLOAD NOW »
The authors' approach to the information aids professors, researchers, and students in a variety of disciplines and industries. Extensive SAS code and the corresponding output accompany sample problems, and clear explanations of the various SAS procedures are included. Emphasis is on correct interpretation of the output to draw meaningful conclusions. Featuring both the theoretical and the practical, topics covered include multivariate analysis of experimental data and repeated measures data, graphical representation of data including biplots, and multivariate regression. In addition, a quick introduction to the IML procedure with special reference to multivariate data is available in an appendix. SAS programs and output integrated with the text make it easy to read and follow the examples. High-resolution graphs have been used in this new edition.

Applied Multivariate Analysis

Applied Multivariate Analysis

  • Author: Neil H. Timm
  • Publisher: Springer Science & Business Media
  • ISBN: 0387953477
  • Category: Business & Economics
  • Page: 693
  • View: 1884
DOWNLOAD NOW »
Timm provides a broad overview of the basic theory and methods of applied multivariate analysis. The presentation integrates both theory and practice including the analysis of formal linear models and exploratory analysis techniques.

Multivariate Statistical Analysis

Multivariate Statistical Analysis

Revised And Expanded

  • Author: Narayan C. Giri
  • Publisher: CRC Press
  • ISBN: 9780203913239
  • Category: Mathematics
  • Page: 550
  • View: 1736
DOWNLOAD NOW »
Significantly revised and expanded, Multivariate Statistical Analysis, Second Edition addresses several added topics related to the properties and characterization of symmetric distributions, elliptically symmetric multivariate distributions, singular symmetric distributions, estimation of covariance matrices, tests of mean against one-sided alternatives, and correlations in symmetrical distributions. Its discussions and examples draw on a wide range of multivariate data, from biometry, agriculture, biomedical science, economics, to filtering and stochastic control, stock market data analysis, and random signal processing.

Applied Multivariate Statistics for the Social Sciences

Applied Multivariate Statistics for the Social Sciences

Analyses with SAS and IBM’s SPSS, Sixth Edition

  • Author: Keenan A. Pituch,James P. Stevens
  • Publisher: Routledge
  • ISBN: 1317805917
  • Category: Psychology
  • Page: 814
  • View: 2444
DOWNLOAD NOW »
Now in its 6th edition, the authoritative textbook Applied Multivariate Statistics for the Social Sciences, continues to provide advanced students with a practical and conceptual understanding of statistical procedures through examples and data-sets from actual research studies. With the added expertise of co-author Keenan Pituch (University of Texas-Austin), this 6th edition retains many key features of the previous editions, including its breadth and depth of coverage, a review chapter on matrix algebra, applied coverage of MANOVA, and emphasis on statistical power. In this new edition, the authors continue to provide practical guidelines for checking the data, assessing assumptions, interpreting, and reporting the results to help students analyze data from their own research confidently and professionally. Features new to this edition include: NEW chapter on Logistic Regression (Ch. 11) that helps readers understand and use this very flexible and widely used procedure NEW chapter on Multivariate Multilevel Modeling (Ch. 14) that helps readers understand the benefits of this "newer" procedure and how it can be used in conventional and multilevel settings NEW Example Results Section write-ups that illustrate how results should be presented in research papers and journal articles NEW coverage of missing data (Ch. 1) to help students understand and address problems associated with incomplete data Completely re-written chapters on Exploratory Factor Analysis (Ch. 9), Hierarchical Linear Modeling (Ch. 13), and Structural Equation Modeling (Ch. 16) with increased focus on understanding models and interpreting results NEW analysis summaries, inclusion of more syntax explanations, and reduction in the number of SPSS/SAS dialogue boxes to guide students through data analysis in a more streamlined and direct approach Updated syntax to reflect newest versions of IBM SPSS (21) /SAS (9.3) A free online resources site at www.routledge.com/9780415836661 with data sets and syntax from the text, additional data sets, and instructor’s resources (including PowerPoint lecture slides for select chapters, a conversion guide for 5th edition adopters, and answers to exercises). Ideal for advanced graduate-level courses in education, psychology, and other social sciences in which multivariate statistics, advanced statistics, or quantitative techniques courses are taught, this book also appeals to practicing researchers as a valuable reference. Pre-requisites include a course on factorial ANOVA and covariance; however, a working knowledge of matrix algebra is not assumed.

Applied Multivariate Statistical Analysis

Applied Multivariate Statistical Analysis

  • Author: Richard Arnold Johnson,Dean W. Wichern
  • Publisher: N.A
  • ISBN: 9780130925534
  • Category: Mathematics
  • Page: 767
  • View: 9441
DOWNLOAD NOW »
& This market leader offers a readable introduction to the statistical analysis of multivariate observations. Gives readers the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Starts with a formulation of the population models, delineates the corresponding sample results, and liberally illustrates everything with examples. & Offers an abundance of examples and exercises based on real data.& Appropriate for experimental scientists in a variety of disciplines.

Applied Multivariate Statistics with R

Applied Multivariate Statistics with R

  • Author: Daniel Zelterman
  • Publisher: Springer
  • ISBN: 3319140930
  • Category: Medical
  • Page: 393
  • View: 9069
DOWNLOAD NOW »
This book brings the power of multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source, shareware program R, Professor Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays, linear algebra, univariate, bivariate and multivariate normal distributions, factor methods, linear regression, discrimination and classification, clustering, time series models, and additional methods. Zelterman uses practical examples from diverse disciplines to welcome readers from a variety of academic specialties. Those with backgrounds in statistics will learn new methods while they review more familiar topics. Chapters include exercises, real data sets, and R implementations. The data are interesting, real-world topics, particularly from health and biology-related contexts. As an example of the approach, the text examines a sample from the Behavior Risk Factor Surveillance System, discussing both the shortcomings of the data as well as useful analyses. The text avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary.

Applied Multivariate Research

Applied Multivariate Research

Design and Interpretation

  • Author: Lawrence S. Meyers,Glenn Gamst,A.J. Guarino
  • Publisher: SAGE Publications
  • ISBN: 1506329780
  • Category: Social Science
  • Page: 1016
  • View: 2393
DOWNLOAD NOW »
Using a conceptual, non-mathematical approach, the updated Third Edition of Applied Multivariate Research: Design and Interpretation provides full coverage of the wide range of multivariate topics that graduate students across the social and behavioral sciences encounter. Authors Lawrence S. Meyers, Glenn Gamst, and A. J. Guarino integrate innovative multicultural topics in examples throughout the book, which include both conceptual and practical coverage of: statistical techniques of data screening; multiple regression; multilevel modeling; exploratory factor analysis; discriminant analysis; structural equation modeling; structural equation modeling invariance; survival analysis; multidimensional scaling; and cluster analysis.

Applied Multivariate Analysis

Applied Multivariate Analysis

Using Bayesian and Frequentist Methods of Inference, Second Edition

  • Author: S. James Press
  • Publisher: Courier Corporation
  • ISBN: 0486442365
  • Category: Mathematics
  • Page: 671
  • View: 8077
DOWNLOAD NOW »
Includes practical elements of matrix theory, continuous multivariate distributions and basic multivariate statistics in the normal distribution; regression and the analysis of variance; factor analysis and latent structure analysis; canonical correlations; stable portfolio analysis; classifications and discrimination models; control in the multivariate linear model; and structuring multivariate populations. 1982 edition.

Multivariate Statistics

Multivariate Statistics

Exercises and Solutions

  • Author: Wolfgang Karl Härdle,Zdeněk Hlávka
  • Publisher: Springer
  • ISBN: 364236005X
  • Category: Mathematics
  • Page: 362
  • View: 2555
DOWNLOAD NOW »
The authors present tools and concepts of multivariate data analysis by means of exercises and their solutions. The first part is devoted to graphical techniques. The second part deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The last part introduces a wide variety of exercises in applied multivariate data analysis. The book demonstrates the application of simple calculus and basic multivariate methods in real life situations. It contains altogether more than 250 solved exercises which can assist a university teacher in setting up a modern multivariate analysis course. All computer-based exercises are available in the R language. All data sets are included in the library SMSdata that may be downloaded via the quantlet download center www.quantlet.org. Data sets are available also via the Springer webpage. For interactive display of low-dimensional projections of a multivariate data set, we recommend GGobi.

Applied Multivariate Statistical Analysis (Classic Version)

Applied Multivariate Statistical Analysis (Classic Version)

  • Author: Richard A. Johnson,Dean W. Wichern
  • Publisher: Pearson
  • ISBN: 9780134995397
  • Category: Multivariate analysis
  • Page: 804
  • View: 9916
DOWNLOAD NOW »
For courses in Multivariate Statistics, Marketing Research, Intermediate Business Statistics, Statistics in Education, and graduate-level courses in Experimental Design and Statistics. Appropriate for experimental scientists in a variety of disciplines, this market-leading text offers a readable introduction to the statistical analysis of multivariate observations. Its primary goal is to impart the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Ideal for a junior/senior or graduate level course that explores the statistical methods for describing and analyzing multivariate data, the text assumes two or more statistics courses as a prerequisite.

An Introduction to Applied Multivariate Analysis with R

An Introduction to Applied Multivariate Analysis with R

  • Author: Brian Everitt,Torsten Hothorn
  • Publisher: Springer Science & Business Media
  • ISBN: 9781441996503
  • Category: Mathematics
  • Page: 274
  • View: 6696
DOWNLOAD NOW »
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.

Applied Multivariate Analysis

Applied Multivariate Analysis

  • Author: Neil H. Timm
  • Publisher: Springer Science & Business Media
  • ISBN: 0387227717
  • Category: Mathematics
  • Page: 695
  • View: 1084
DOWNLOAD NOW »
This book provides a broad overview of the basic theory and methods of applied multivariate analysis. The presentation integrates both theory and practice including both the analysis of formal linear multivariate models and exploratory data analysis techniques. Each chapter contains the development of basic theoretical results with numerous applications illustrated using examples from the social and behavioral sciences, and other disciplines. All examples are analyzed using SAS for Windows Version 8.0.

Applied Multivariate Data Analysis

Applied Multivariate Data Analysis

  • Author: Brian S. Everitt,Graham Dunn
  • Publisher: Oxford University Press
  • ISBN: 9780340741221
  • Category: Business & Economics
  • Page: 342
  • View: 4661
DOWNLOAD NOW »
Multivariate analysis plays an important role in the understanding of complex data sets requiring simultaneous examination of all variables. Breaking through the apparent disorder of the information, it provides the means for both describing and exploring data, aiming to extract the underlying patterns and structure. This intermediate-level textbook introduces the reader to the variety of methods by which multivariate statistical analysis may be undertaken. Now in its 2nd edition, 'Applied Multivariate Data Analysis' has been fully expanded and updated, including major chapter revisions as well as new sections on neural networks and random effects models for longitudinal data. Maintaining the easy-going style of the first edition, the authors provide clear explanations of each technique, as well as supporting figures and examples, and minimal technical jargon. With extensive exercises following every chapter, 'Applied Multivariate Data Analysis' is a valuable resource for students on applied statistics courses and applied researchers in many disciplines.

Mathematical Tools for Applied Multivariate Analysis

Mathematical Tools for Applied Multivariate Analysis

  • Author: Paul E. Green
  • Publisher: Academic Press
  • ISBN: 1483214044
  • Category: Mathematics
  • Page: 402
  • View: 9358
DOWNLOAD NOW »
Mathematical Tools for Applied Multivariate Analysis provides information pertinent to the aspects of transformational geometry, matrix algebra, and the calculus that are most relevant for the study of multivariate analysis. This book discusses the mathematical foundations of applied multivariate analysis. Organized into six chapters, this book begins with an overview of the three problems in multiple regression, principal components analysis, and multiple discriminant analysis. This text then presents a standard treatment of the mechanics of matrix algebra, including definitions and operations on matrices, vectors, and determinants. Other chapters consider the topics of eigenstructures and linear transformations that are important to the understanding of multivariate techniques. This book discusses as well the eigenstructures and quadratic forms. The final chapter deals with the geometric aspects of linear transformations. This book is a valuable resource for students.