Search Results for "applied-regression-analysis-and-generalized-linear-models"

Applied Regression Analysis and Generalized Linear Models

Applied Regression Analysis and Generalized Linear Models

  • Author: John Fox
  • Publisher: SAGE Publications
  • ISBN: 1483321312
  • Category: Social Science
  • Page: 816
  • View: 8461
DOWNLOAD NOW »
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book.

Applied Regression Analysis, Linear Models, and Related Methods

Applied Regression Analysis, Linear Models, and Related Methods

  • Author: John Fox
  • Publisher: SAGE
  • ISBN: 9780803945401
  • Category: Social Science
  • Page: 597
  • View: 7332
DOWNLOAD NOW »
An accessible, detailed, and up-to-date treatment of regression analysis, linear models, and closely related methods is provided in this book. Incorporating nearly 200 graphs and numerous examples and exercises that employ real data from the social sciences, the book begins with a consideration of the role of statistical data analysis in social research. It then moves on to cover the following topics: graphical methods for examining and transforming data; linear least-squares regression; dummy-variables regression; analysis of variance; diagnostic methods for discovering whether a linear model fit to data adequately represents the data; extensions to linear least squares, including logit and probit models, time-series regression, nonlinear

Applied Regression Analysis and Generalized Linear Models

Applied Regression Analysis and Generalized Linear Models

  • Author: John Fox
  • Publisher: SAGE Publications
  • ISBN: 1483386473
  • Category: Social Science
  • Page: 816
  • View: 5595
DOWNLOAD NOW »
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book.

Applied Regression Analysis and Generalized Linear Models

Applied Regression Analysis and Generalized Linear Models

  • Author: John Fox
  • Publisher: SAGE Publications
  • ISBN: 1483352528
  • Category: Social Science
  • Page: 688
  • View: 3714
DOWNLOAD NOW »
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Second Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material throughout the book. Key Updates to the Second Edition: Provides greatly enhanced coverage of generalized linear models, with an emphasis on models for categorical and count data Offers new chapters on missing data in regression models and on methods of model selection Includes expanded treatment of robust regression, time-series regression, nonlinear regression, and nonparametric regression Incorporates new examples using larger data sets Includes an extensive Web site at http://www.sagepub.com/fox that presents appendixes, data sets used in the book and for data-analytic exercises, and the data-analytic exercises themselves Intended Audience: This core text will be a valuable resource for graduate students and researchers in the social sciences (particularly sociology, political science, and psychology) and other disciplines that employ linear and related models for data analysis.

Applied Regression Analysis and Generalized Linear Models

Applied Regression Analysis and Generalized Linear Models

  • Author: CTI Reviews
  • Publisher: Cram101 Textbook Reviews
  • ISBN: 1467265039
  • Category: Education
  • Page: 92
  • View: 4735
DOWNLOAD NOW »
Facts101 is your complete guide to Applied Regression Analysis and Generalized Linear Models. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

An R Companion to Applied Regression

An R Companion to Applied Regression

  • Author: John Fox,Sanford Weisberg
  • Publisher: SAGE Publications
  • ISBN: 1544336462
  • Category: Social Science
  • Page: 608
  • View: 5433
DOWNLOAD NOW »
An R Companion to Applied Regression is a broad introduction to the R statistical computing environment in the context of applied regression analysis. John Fox and Sanford Weisberg provide a step-by-step guide to using the free statistical software R, an emphasis on integrating statistical computing in R with the practice of data analysis, coverage of generalized linear models, and substantial web-based support materials. The Third Edition includes a new chapter on mixed-effects models, new and updated data sets, and a de-emphasis on statistical programming, while retaining a general introduction to basic R programming. The authors have substantially updated both the car and effects packages for R for this new edition, and include coverage of RStudio and R Markdown.

An R and S-Plus Companion to Applied Regression

An R and S-Plus Companion to Applied Regression

  • Author: John Fox
  • Publisher: SAGE
  • ISBN: 9780761922803
  • Category: Mathematics
  • Page: 312
  • View: 8201
DOWNLOAD NOW »
"This book fits right into a needed niche: rigorous enough to give full explanation of the power of the S language, yet accessible enough to assign to social science graduate students without fear of intimidation. It is a tremendous balance of applied statistical "firepower" and thoughtful explanation. It meets all of the important mechanical needs: each example is given in detail, code and data are freely available, and the nuances of models are given rather than just the bare essentials. It also meets some important theoretical needs: linear models, categorical data analysis, an introduction to applying GLMs, a discussion of model diagnostics, and useful instructions on writing customized functions. " —JEFF GILL, University of Florida, Gainesville

Regression

Regression

Modelle, Methoden und Anwendungen

  • Author: Ludwig Fahrmeir,Thomas Kneib,Stefan Lang
  • Publisher: Springer-Verlag
  • ISBN: 3642018378
  • Category: Business & Economics
  • Page: 502
  • View: 5240
DOWNLOAD NOW »
In dem Band beschreiben die Autoren erstmals klassische Regressionsansätze und moderne nicht- und semiparametrische Methoden in einer integrierten und anwendungsorientierten Form. Um Lesern die Analyse eigener Fragestellungen zu ermöglichen, demonstrieren sie die praktische Anwendung der Konzepte und Methoden anhand ausführlicher Fallstudien. Geeignet für Studierende der Statistik sowie für Wissenschaftler und Praktiker, zum Beispiel in den Wirtschafts- und Sozialwissenschaften, der Bioinformatik und -statistik, Ökonometrie und Epidemiologie.

Applied Regression Including Computing and Graphics

Applied Regression Including Computing and Graphics

  • Author: R. Dennis Cook,Sanford Weisberg
  • Publisher: John Wiley & Sons
  • ISBN: 0470317787
  • Category: Mathematics
  • Page: 632
  • View: 8160
DOWNLOAD NOW »
A step-by-step guide to computing and graphics in regression analysis In this unique book, leading statisticians Dennis Cook and Sanford Weisberg expertly blend regression fundamentals and cutting-edge graphical techniques. They combine and up- date most of the material from their widely used earlier work, An Introduction to Regression Graphics, and Weisberg's Applied Linear Regression; incorporate the latest in statistical graphics, computing, and regression models; and wind up with a modern, fully integrated approach to one of the most important tools of data analysis. In 23 concise, easy-to-digest chapters, the authors present:? A wealth of simple 2D and 3D graphical techniques, helping visualize results through graphs * An improved version of the user-friendly Arc software, which lets readers promptly implement new ideas * Complete coverage of regression models, including logistic regression and generalized linear models * More than 300 figures, easily reproducible on the computer * Numerous examples and problems based on real data * A companion Web site featuring free software and advice, available at www.wiley.com/mathem atics Accessible, self-contained, and fully referenced, Applied Regression Including Computing and Graphics assumes only a first course in basic statistical methods and provides a bona fide user manual for the Arc software. It is an invaluable resource for anyone interested in learning how to analyze regression problems with confidence and depth.

Generalized Linear Models

Generalized Linear Models

with Applications in Engineering and the Sciences

  • Author: Raymond H. Myers,Douglas C. Montgomery,G. Geoffrey Vining,Timothy J. Robinson
  • Publisher: John Wiley & Sons
  • ISBN: 0470556978
  • Category: Mathematics
  • Page: 544
  • View: 8889
DOWNLOAD NOW »
Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.

Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

  • Author: Kai L. Chung
  • Publisher: Springer-Verlag
  • ISBN: 3642670334
  • Category: Mathematics
  • Page: 346
  • View: 3698
DOWNLOAD NOW »
Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

Applied Regression Analysis

Applied Regression Analysis

  • Author: Norman R. Draper,Harry Smith
  • Publisher: John Wiley & Sons
  • ISBN: 1118625684
  • Category: Mathematics
  • Page: 736
  • View: 4074
DOWNLOAD NOW »
An outstanding introduction to the fundamentals of regression analysis-updated and expanded The methods of regression analysis are the most widely used statistical tools for discovering the relationships among variables. This classic text, with its emphasis on clear, thorough presentation of concepts and applications, offers a complete, easily accessible introduction to the fundamentals of regression analysis. Assuming only a basic knowledge of elementary statistics, Applied Regression Analysis, Third Edition focuses on the fitting and checking of both linear and nonlinear regression models, using small and large data sets, with pocket calculators or computers. This Third Edition features separate chapters on multicollinearity, generalized linear models, mixture ingredients, geometry of regression, robust regression, and resampling procedures. Extensive support materials include sets of carefully designed exercises with full or partial solutions and a series of true/false questions with answers. All data sets used in both the text and the exercises can be found on the companion disk at the back of the book. For analysts, researchers, and students in university, industrial, and government courses on regression, this text is an excellent introduction to the subject and an efficient means of learning how to use a valuable analytical tool. It will also prove an invaluable reference resource for applied scientists and statisticians.

Interaction Effects in Linear and Generalized Linear Models

Interaction Effects in Linear and Generalized Linear Models

Examples and Applications Using Stata

  • Author: Robert L. Kaufman
  • Publisher: SAGE Publications
  • ISBN: 1506365396
  • Category: Social Science
  • Page: 608
  • View: 1705
DOWNLOAD NOW »
Offering a clear set of workable examples with data and explanations, Interaction Effects in Linear and Generalized Linear Models is a comprehensive and accessible text that provides a unified approach to interpreting interaction effects. The book develops the statistical basis for the general principles of interpretive tools and applies them to a variety of examples, introduces the ICALC Toolkit for Stata (downloadable from the Robert L. Kaufman’s website), and offers a series of start-to-finish application examples to show students how to interpret interaction effects for a variety of different techniques of analysis, beginning with OLS regression. The data sets and the Stata code to reproduce the results of the application examples are available online.

Multiple and Generalized Nonparametric Regression

Multiple and Generalized Nonparametric Regression

  • Author: John Fox
  • Publisher: SAGE
  • ISBN: 9780761921899
  • Category: Social Science
  • Page: 83
  • View: 1167
DOWNLOAD NOW »
This book builds on John Fox's previous volume in the QASS Series, Non Parametric Simple Regression. In this book, the reader learns how to estimate and plot smooth functions when there are multiple independent variables.

Nonparametric Regression and Generalized Linear Models

Nonparametric Regression and Generalized Linear Models

A roughness penalty approach

  • Author: P.J. Green,Bernard. W. Silverman
  • Publisher: CRC Press
  • ISBN: 9780412300400
  • Category: Mathematics
  • Page: 184
  • View: 9832
DOWNLOAD NOW »
In recent years, there has been a great deal of interest and activity in the general area of nonparametric smoothing in statistics. This monograph concentrates on the roughness penalty method and shows how this technique provides a unifying approach to a wide range of smoothing problems. The method allows parametric assumptions to be realized in regression problems, in those approached by generalized linear modelling, and in many other contexts. The emphasis throughout is methodological rather than theoretical, and it concentrates on statistical and computation issues. Real data examples are used to illustrate the various methods and to compare them with standard parametric approaches. Some publicly available software is also discussed. The mathematical treatment is self-contained and depends mainly on simple linear algebra and calculus. This monograph will be useful both as a reference work for research and applied statisticians and as a text for graduate students and other encountering the material for the first time.

Regression Diagnostics

Regression Diagnostics

An Introduction

  • Author: John Fox
  • Publisher: SAGE
  • ISBN: 9780803939714
  • Category: Mathematics
  • Page: 92
  • View: 8032
DOWNLOAD NOW »
With Regression Diagnostics, researchers now have an accessible explanation of the techniques needed for exploring problems that compromise a regression analysis and for determining whether certain assumptions appear reasonable. The book covers such topics as the problem of collinearity in multiple regression, dealing with outlying and influential data, non-normality of errors, non-constant error variance and the problems and opportunities presented by discrete data. In addition, sophisticated diagnostics based on maximum-likelihood methods, scores tests, and constructed variables are introduced.

Extending the Linear Model with R

Extending the Linear Model with R

Generalized Linear, Mixed Effects and Nonparametric Regression Models

  • Author: Julian J. Faraway
  • Publisher: CRC Press
  • ISBN: 9780203492284
  • Category: Mathematics
  • Page: 312
  • View: 3352
DOWNLOAD NOW »
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author's treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the data described in the book is available at http://people.bath.ac.uk/jjf23/ELM/ Statisticians need to be familiar with a broad range of ideas and techniques. This book provides a well-stocked toolbox of methodologies, and with its unique presentation of these very modern statistical techniques, holds the potential to break new ground in the way graduate-level courses in this area are taught.

Applying Generalized Linear Models

Applying Generalized Linear Models

  • Author: James K. Lindsey
  • Publisher: Springer Science & Business Media
  • ISBN: 038722730X
  • Category: Mathematics
  • Page: 256
  • View: 9259
DOWNLOAD NOW »
This book describes how generalised linear modelling procedures can be used in many different fields, without becoming entangled in problems of statistical inference. The author shows the unity of many of the commonly used models and provides readers with a taste of many different areas, such as survival models, time series, and spatial analysis, and of their unity. As such, this book will appeal to applied statisticians and to scientists having a basic grounding in modern statistics. With many exercises at the end of each chapter, it will equally constitute an excellent text for teaching applied statistics students and non- statistics majors. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, being familiar at least with the analysis of the simpler normal linear models, regression and ANOVA.

Nonparametric Simple Regression

Nonparametric Simple Regression

Smoothing Scatterplots

  • Author: John Fox,Sage Publications, inc
  • Publisher: SAGE
  • ISBN: 9780761915850
  • Category: Mathematics
  • Page: 83
  • View: 4307
DOWNLOAD NOW »
John Foxintroduces readers to the techniques of kernel estimation, additive nonparametric regression, and the ways nonparametric regression can be employed to select transformations of the data preceding a linear least-squares fit.