Search Results for "bayesian-computation-with-r-use-r"

Bayesian Computation with R

Bayesian Computation with R

  • Author: Jim Albert
  • Publisher: Springer Science & Business Media
  • ISBN: 0387922989
  • Category: Mathematics
  • Page: 300
  • View: 8953
DOWNLOAD NOW »
There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN).

Bayesian Computation with R

Bayesian Computation with R

  • Author: Jim Albert
  • Publisher: Springer Science & Business Media
  • ISBN: 0387713840
  • Category: Computers
  • Page: 267
  • View: 7832
DOWNLOAD NOW »
'Bayesian Cmputation with R' introduces Bayesian modelling by the use of computation using the R language. The use of R to interface with WinBUGS, a popular MCMC computing language, is described with several illustrative examples.

Bayesian Computation with R

Bayesian Computation with R

  • Author: Jim Albert
  • Publisher: Springer Science & Business Media
  • ISBN: 0387713859
  • Category: Computers
  • Page: 268
  • View: 4585
DOWNLOAD NOW »
Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. Early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restricted inference, and robust modeling.

Bayesian Essentials with R

Bayesian Essentials with R

  • Author: Jean-Michel Marin,Christian P. Robert
  • Publisher: Springer Science & Business Media
  • ISBN: 1461486874
  • Category: Computers
  • Page: 296
  • View: 7536
DOWNLOAD NOW »
This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics.

Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R

  • Author: Christian Robert,George Casella
  • Publisher: Springer Science & Business Media
  • ISBN: 1441915753
  • Category: Computers
  • Page: 284
  • View: 337
DOWNLOAD NOW »
This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.

R by Example

R by Example

  • Author: Jim Albert,Maria Rizzo
  • Publisher: Springer Science & Business Media
  • ISBN: 1461413656
  • Category: Mathematics
  • Page: 359
  • View: 1707
DOWNLOAD NOW »
R by Example is an example-based introduction to the statistical computing environment that does not assume any previous familiarity with R or other software packages. R functions are presented in the context of interesting applications with real data. The purpose of this book is to illustrate a range of statistical and probability computations using R for people who are learning, teaching, or using statistics. Specifically, this book is written for users who have covered at least the equivalent of (or are currently studying) undergraduate level calculus-based courses in statistics. These users are learning or applying exploratory and inferential methods for analyzing data and this book is intended to be a useful resource for learning how to implement these procedures in R.

Applied Bayesian Statistics

Applied Bayesian Statistics

With R and OpenBUGS Examples

  • Author: Mary Kathryn Cowles
  • Publisher: Springer Science & Business Media
  • ISBN: 1461456967
  • Category: Mathematics
  • Page: 232
  • View: 8324
DOWNLOAD NOW »
This book is based on over a dozen years teaching a Bayesian Statistics course. The material presented here has been used by students of different levels and disciplines, including advanced undergraduates studying Mathematics and Statistics and students in graduate programs in Statistics, Biostatistics, Engineering, Economics, Marketing, Pharmacy, and Psychology. The goal of the book is to impart the basics of designing and carrying out Bayesian analyses, and interpreting and communicating the results. In addition, readers will learn to use the predominant software for Bayesian model-fitting, R and OpenBUGS. The practical approach this book takes will help students of all levels to build understanding of the concepts and procedures required to answer real questions by performing Bayesian analysis of real data. Topics covered include comparing and contrasting Bayesian and classical methods, specifying hierarchical models, and assessing Markov chain Monte Carlo output. Kate Cowles taught Suzuki piano for many years before going to graduate school in Biostatistics. Her research areas are Bayesian and computational statistics, with application to environmental science. She is on the faculty of Statistics at The University of Iowa.

Bayesian Core: A Practical Approach to Computational Bayesian Statistics

Bayesian Core: A Practical Approach to Computational Bayesian Statistics

  • Author: Jean-Michel Marin,Christian Robert
  • Publisher: Springer Science & Business Media
  • ISBN: 0387389830
  • Category: Mathematics
  • Page: 258
  • View: 1074
DOWNLOAD NOW »
This Bayesian modeling book is intended for practitioners and applied statisticians looking for a self-contained entry to computational Bayesian statistics. Focusing on standard statistical models and backed up by discussed real datasets available from the book website, it provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical justifications. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book.

Bayesian Networks in R

Bayesian Networks in R

with Applications in Systems Biology

  • Author: Radhakrishnan Nagarajan,Marco Scutari,Sophie Lèbre
  • Publisher: Springer Science & Business Media
  • ISBN: 1461464463
  • Category: Computers
  • Page: 157
  • View: 2043
DOWNLOAD NOW »
Bayesian Networks in R with Applications in Systems Biology is unique as it introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is also gradually increased across the chapters with exercises and solutions for enhanced understanding for hands-on experimentation of the theory and concepts. The application focuses on systems biology with emphasis on modeling pathways and signaling mechanisms from high-throughput molecular data. Bayesian networks have proven to be especially useful abstractions in this regard. Their usefulness is especially exemplified by their ability to discover new associations in addition to validating known ones across the molecules of interest. It is also expected that the prevalence of publicly available high-throughput biological data sets may encourage the audience to explore investigating novel paradigms using the approaches presented in the book.

A First Course in Bayesian Statistical Methods

A First Course in Bayesian Statistical Methods

  • Author: Peter D. Hoff
  • Publisher: Springer Science & Business Media
  • ISBN: 9780387924076
  • Category: Mathematics
  • Page: 272
  • View: 9757
DOWNLOAD NOW »
A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

Introduction to Applied Bayesian Statistics and Estimation for Social Scientists

Introduction to Applied Bayesian Statistics and Estimation for Social Scientists

  • Author: Scott M. Lynch
  • Publisher: Springer Science & Business Media
  • ISBN: 0387712658
  • Category: Social Science
  • Page: 359
  • View: 997
DOWNLOAD NOW »
This book outlines Bayesian statistical analysis in great detail, from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research - including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models - and it thoroughly develops each real-data example in painstaking detail.

Dynamic Linear Models with R

Dynamic Linear Models with R

  • Author: Giovanni Petris,Sonia Petrone,Patrizia Campagnoli
  • Publisher: Springer Science & Business Media
  • ISBN: 0387772383
  • Category: Mathematics
  • Page: 252
  • View: 1478
DOWNLOAD NOW »
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

The BUGS Book

The BUGS Book

A Practical Introduction to Bayesian Analysis

  • Author: David Lunn,Chris Jackson,Nicky Best,Andrew Thomas,David Spiegelhalter
  • Publisher: CRC Press
  • ISBN: 1466586664
  • Category: Mathematics
  • Page: 399
  • View: 5798
DOWNLOAD NOW »
Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents complete coverage of all the functionalities of BUGS, including prediction, missing data, model criticism, and prior sensitivity. It also features a large number of worked examples and a wide range of applications from various disciplines. The book introduces regression models, techniques for criticism and comparison, and a wide range of modelling issues before going into the vital area of hierarchical models, one of the most common applications of Bayesian methods. It deals with essentials of modelling without getting bogged down in complexity. The book emphasises model criticism, model comparison, sensitivity analysis to alternative priors, and thoughtful choice of prior distributions—all those aspects of the "art" of modelling that are easily overlooked in more theoretical expositions. More pragmatic than ideological, the authors systematically work through the large range of "tricks" that reveal the real power of the BUGS software, for example, dealing with missing data, censoring, grouped data, prediction, ranking, parameter constraints, and so on. Many of the examples are biostatistical, but they do not require domain knowledge and are generalisable to a wide range of other application areas. Full code and data for examples, exercises, and some solutions can be found on the book’s website.

Statistical Rethinking

Statistical Rethinking

A Bayesian Course with Examples in R and Stan

  • Author: Richard McElreath
  • Publisher: CRC Press
  • ISBN: 1482253461
  • Category: Mathematics
  • Page: 469
  • View: 4114
DOWNLOAD NOW »
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Bayesian Networks

Bayesian Networks

With Examples in R

  • Author: Marco Scutari,Jean-Baptiste Denis
  • Publisher: CRC Press
  • ISBN: 1482225581
  • Category: Computers
  • Page: 241
  • View: 8635
DOWNLOAD NOW »
Understand the Foundations of Bayesian Networks—Core Properties and Definitions Explained Bayesian Networks: With Examples in R introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples in R illustrate each step of the modeling process. The examples start from the simplest notions and gradually increase in complexity. The authors also distinguish the probabilistic models from their estimation with data sets. The first three chapters explain the whole process of Bayesian network modeling, from structure learning to parameter learning to inference. These chapters cover discrete Bayesian, Gaussian Bayesian, and hybrid networks, including arbitrary random variables. The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R and other software packages appropriate for Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein signaling network paper and graphical modeling approaches for predicting the composition of different body parts. Suitable for graduate students and non-statisticians, this text provides an introductory overview of Bayesian networks. It gives readers a clear, practical understanding of the general approach and steps involved.

Workshop Statistics

Workshop Statistics

Discovery with Data, A Bayesian Approach

  • Author: James H. Albert,Allan J. Rossman
  • Publisher: Springer Science & Business Media
  • ISBN: 9781930190122
  • Category: Mathematics
  • Page: 532
  • View: 8530
DOWNLOAD NOW »
This first edition focuses on probability and the Bayesian viewpoint. It presents basic material on probability and then introduces inference by means of Bayes' rule. The emphasis is on statistical thinking and how one learns from data. The objective is to present the basic tenets of statistical inference. Unique in its format, the text allows students to discover statistical concepts, explore statistical principles, and apply statistical techniques. In addition to the numerous activities and exercises around which the text is built, the book includes a basic text exposition for each topic, and data appendices.

Learning Bayesian Models with R

Learning Bayesian Models with R

  • Author: Dr. Hari M. Koduvely
  • Publisher: Packt Publishing Ltd
  • ISBN: 1783987618
  • Category: Computers
  • Page: 168
  • View: 3685
DOWNLOAD NOW »
Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide Who This Book Is For This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. To understand this book, it would be useful if you have basic knowledge of probability theory and analytics and some familiarity with the programming language R. What You Will Learn Set up the R environment Create a classification model to predict and explore discrete variables Get acquainted with Probability Theory to analyze random events Build Linear Regression models Use Bayesian networks to infer the probability distribution of decision variables in a problem Model a problem using Bayesian Linear Regression approach with the R package BLR Use Bayesian Logistic Regression model to classify numerical data Perform Bayesian Inference on massively large data sets using the MapReduce programs in R and Cloud computing In Detail Bayesian Inference provides a unified framework to deal with all sorts of uncertainties when learning patterns form data using machine learning models and use it for predicting future observations. However, learning and implementing Bayesian models is not easy for data science practitioners due to the level of mathematical treatment involved. Also, applying Bayesian methods to real-world problems requires high computational resources. With the recent advances in computation and several open sources packages available in R, Bayesian modeling has become more feasible to use for practical applications today. Therefore, it would be advantageous for all data scientists and engineers to understand Bayesian methods and apply them in their projects to achieve better results. Learning Bayesian Models with R starts by giving you a comprehensive coverage of the Bayesian Machine Learning models and the R packages that implement them. It begins with an introduction to the fundamentals of probability theory and R programming for those who are new to the subject. Then the book covers some of the important machine learning methods, both supervised and unsupervised learning, implemented using Bayesian Inference and R. Every chapter begins with a theoretical description of the method explained in a very simple manner. Then, relevant R packages are discussed and some illustrations using data sets from the UCI Machine Learning repository are given. Each chapter ends with some simple exercises for you to get hands-on experience of the concepts and R packages discussed in the chapter. The last chapters are devoted to the latest development in the field, specifically Deep Learning, which uses a class of Neural Network models that are currently at the frontier of Artificial Intelligence. The book concludes with the application of Bayesian methods on Big Data using the Hadoop and Spark frameworks. Style and approach The book first gives you a theoretical description of the Bayesian models in simple language, followed by details of its implementation in the R package. Each chapter has illustrations for the use of Bayesian model and the corresponding R package, using data sets from the UCI Machine Learning repository. Each chapter also contains sufficient exercises for you to get more hands-on practice.

Understanding Computational Bayesian Statistics

Understanding Computational Bayesian Statistics

  • Author: William M. Bolstad
  • Publisher: John Wiley & Sons
  • ISBN: 1118209923
  • Category: Mathematics
  • Page: 336
  • View: 5461
DOWNLOAD NOW »
A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistical models, including the multiple linear regression model, the hierarchical mean model, the logistic regression model, and the proportional hazards model. The book begins with an outline of the similarities and differences between Bayesian and the likelihood approaches to statistics. Subsequent chapters present key techniques for using computer software to draw Monte Carlo samples from the incompletely known posterior distribution and performing the Bayesian inference calculated from these samples. Topics of coverage include: Direct ways to draw a random sample from the posterior by reshaping a random sample drawn from an easily sampled starting distribution The distributions from the one-dimensional exponential family Markov chains and their long-run behavior The Metropolis-Hastings algorithm Gibbs sampling algorithm and methods for speeding up convergence Markov chain Monte Carlo sampling Using numerous graphs and diagrams, the author emphasizes a step-by-step approach to computational Bayesian statistics. At each step, important aspects of application are detailed, such as how to choose a prior for logistic regression model, the Poisson regression model, and the proportional hazards model. A related Web site houses R functions and Minitab macros for Bayesian analysis and Monte Carlo simulations, and detailed appendices in the book guide readers through the use of these software packages. Understanding Computational Bayesian Statistics is an excellent book for courses on computational statistics at the upper-level undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who use computer programs to conduct statistical analyses of data and solve problems in their everyday work.

Analyzing Baseball Data with R

Analyzing Baseball Data with R

  • Author: Max Marchi,Jim Albert
  • Publisher: CRC Press
  • ISBN: 1466570237
  • Category: Mathematics
  • Page: 334
  • View: 5205
DOWNLOAD NOW »
With its flexible capabilities and open-source platform, R has become a major tool for analyzing detailed, high-quality baseball data. Analyzing Baseball Data with R provides an introduction to R for sabermetricians, baseball enthusiasts, and students interested in exploring the rich sources of baseball data. It equips readers with the necessary skills and software tools to perform all of the analysis steps, from gathering the datasets and entering them in a convenient format to visualizing the data via graphs to performing a statistical analysis. The authors first present an overview of publicly available baseball datasets and a gentle introduction to the type of data structures and exploratory and data management capabilities of R. They also cover the traditional graphics functions in the base package and introduce more sophisticated graphical displays available through the lattice and ggplot2 packages. Much of the book illustrates the use of R through popular sabermetrics topics, including the Pythagorean formula, runs expectancy, career trajectories, simulation of games and seasons, patterns of streaky behavior of players, and fielding measures. Each chapter contains exercises that encourage readers to perform their own analyses using R. All of the datasets and R code used in the text are available online. This book helps readers answer questions about baseball teams, players, and strategy using large, publically available datasets. It offers detailed instructions on downloading the datasets and putting them into formats that simplify data exploration and analysis. Through the book’s various examples, readers will learn about modern sabermetrics and be able to conduct their own baseball analyses.

The R Book

The R Book

  • Author: Michael J. Crawley
  • Publisher: John Wiley & Sons
  • ISBN: 1118448960
  • Category: Mathematics
  • Page: 1080
  • View: 6902
DOWNLOAD NOW »
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)