Search Results for "beautiful-geometry"

Beautiful Geometry

Beautiful Geometry

  • Author: Eli Maor,Eugen Jost
  • Publisher: Princeton University Press
  • ISBN: 1400848334
  • Category: Mathematics
  • Page: 208
  • View: 1451
DOWNLOAD NOW »
If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configurations involving infinity. The result is a delightful and informative illustrated tour through the 2,500-year-old history of one of the most important branches of mathematics.

Die letzten Rätsel der Mathematik

Die letzten Rätsel der Mathematik

  • Author: Ian Stewart
  • Publisher: Rowohlt Verlag GmbH
  • ISBN: 3644030014
  • Category: Mathematics
  • Page: 528
  • View: 3163
DOWNLOAD NOW »
Es sind die wahrhaft widerspenstigen Nüsse, von denen Stewart in seinem neuen Buch berichtet. Mathematische Rätsel, an denen sich die abstraktesten Köpfe seit Jahrzehnten, Jahrhunderten oder sogar Jahrtausenden die Zähne ausbeißen. Weil ab und zu doch jemand die Lösung findet. Wie 1993 der Brite Andrew Wiles nach einem langen Forscherleben für Fermat’s Letzten Satz, der aus dem 17. Jahrhundert stammt. Um Rätsel wie dieses, die meisten aber bislang ungelöst, geht es in Ian Stewarts neuem Buch: die großen mathematische Probleme, von denen jeder, der sich für Mathematik interessiert, schon mal gehört hat, ob es die Goldbachsche, die Riemannsche, die Keplersche oder Poincarés Vermutung ist, um die Quadratur des Kreises oder das Drei-Körper-Problem geht. Stewart erklärt nicht nur die Gleichung, er erzählt auch die oft spannende Geschichte hinter der Entdeckung, die jedes dieser Probleme darstellt. Ein Wissensvergnügen nicht nur für Mathematik-Fans.

Lunda Geometry: Mirror Curves, Designs, Knots, Polyominoes, Patterns, Symmetries

Lunda Geometry: Mirror Curves, Designs, Knots, Polyominoes, Patterns, Symmetries

  • Author: Paulus Gerdes
  • Publisher: Lulu.com
  • ISBN: 1435726294
  • Category:
  • Page: 202
  • View: 7554
DOWNLOAD NOW »
The book "Lunda Geometry" explains how the mathematical concepts of mirror curves and Lunda-designs were discovered in the context of the author's research of 'sona', illustrations traditionally made in the sand by Cokwe storytellers from eastern Angola (a region called Lunda) and neighboring regions of Congo and Zambia. Examples of mirror curves from several cultures are presented. Lunda-designs are aesthetically attractive and display interesting symmetry properties. Examples of Lunda-patterns and Lunda-polyominoes are presented. Some generalizations of the concept of Lunda-design are discussed, like hexagonal Lunda-designs, Lunda-k-designs, Lunda-fractals, and circular Lunda-designs. Lunda-designs of Celtic knot designs are constructed.Several chapters were published in journals like 'Computers & Graphics' (Oxford), 'Visual Mathematics' (Belgrade), and 'Mathematics in School' (UK).

Matroids: A Geometric Introduction

Matroids: A Geometric Introduction

  • Author: Gary Gordon,Jennifer McNulty
  • Publisher: Cambridge University Press
  • ISBN: 0521145686
  • Category: Language Arts & Disciplines
  • Page: 393
  • View: 502
DOWNLOAD NOW »
This friendly introduction helps undergraduate students understand and appreciate matroid theory and its connections to geometry.

Birational Geometry, Rational Curves, and Arithmetic

Birational Geometry, Rational Curves, and Arithmetic

  • Author: Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel
  • Publisher: Springer Science & Business Media
  • ISBN: 146146482X
  • Category: Mathematics
  • Page: 319
  • View: 7294
DOWNLOAD NOW »
​​​​This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.

Models of the Real Projective Plane

Models of the Real Projective Plane

Computer Graphics of Steiner and Boy Surfaces

  • Author: Francois Apery
  • Publisher: Springer-Verlag
  • ISBN: 3322895696
  • Category: Technology & Engineering
  • Page: 156
  • View: 7992
DOWNLOAD NOW »
In the present time, objects generated by computers are replacing models made from wood, wire, and plaster. It is interesting to see how computer graphics can help us to understand the geometry of surfaces and illustrate some recent results on representations of the real projective plane.

The Natural philosophy of Emanuel Swedenborg

The Natural philosophy of Emanuel Swedenborg

A Study in the Conceptual Metaphors of the Mechanistic World-View

  • Author: David Duner
  • Publisher: Springer Science & Business Media
  • ISBN: 9400745605
  • Category: Philosophy
  • Page: 476
  • View: 6587
DOWNLOAD NOW »
Although Emanuel Swedenborg (1688–1772) is commonly known for his spiritual philosophy, his early career was focused unnatural science. During this period, Swedenborg thought of the world was like a gigantic machine, following the laws of mechanics and geometry. This volume analyzes this mechanistic worldview from the cognitive perspective, by means of a study of the metaphors in Swedenborg’s texts. The author argues that these conceptual metaphors are vital skills of the creative mind and scientific thinking, used to create visual analogies and abstract ideas. This means that Swedenborg’s mechanistic and geometrical worldview, allowed him to perceive the world as mechanical and geometrical. Swedenborg thought ”with” books and pens. The reading gave him associations and clues, forced him to interpret, and gave him material for his intellectual development.

Classical Algebraic Geometry

Classical Algebraic Geometry

A Modern View

  • Author: Igor V. Dolgachev
  • Publisher: Cambridge University Press
  • ISBN: 1107017653
  • Category: Mathematics
  • Page: 639
  • View: 2723
DOWNLOAD NOW »
Makes classical algebraic geometry accessible to the modern mathematician.

Some Adventures in Euclidean Geometry

Some Adventures in Euclidean Geometry

  • Author: Michael de Villiers
  • Publisher: Dynamic Mathematics Learning
  • ISBN: 0557102952
  • Category: Euclid's Elements
  • Page: 219
  • View: 6570
DOWNLOAD NOW »
This book seeks to actively involve the reader in the heuristic processes of conjecturing, discovering, formulating, classifying, defining, refuting, proving, etc. within the context of Euclidean geometry. The book deals with many interesting and beautiful geometric results, which have only been discovered during the past 300 years such as the Euler line, the theorems of Ceva, Napoleon, Morley, Miquel, Varignon, etc. Extensive attention is also given to the classification of the quadrilaterals from the symmetry of a side-angle duality. Many examples lend themselves excellently for exploration on computer with dynamic geometry programs such as Sketchpad. The book is addressed primarily to university or college lecturers involved in the under-graduate or in-service training of high school mathematics teachers, but may also interest teachers who are looking for enrichment material, and gifted high school mathematics pupils.

2019 Monthly Planner

2019 Monthly Planner

Schedule Organizer Beautiful Geometric Style Background Cover Monthly and Weekly Calendar to Do List Top Goal and Focus

  • Author: Victoria Mann
  • Publisher: Planner
  • ISBN: 9781728820309
  • Category: Cooking
  • Page: 200
  • View: 6982
DOWNLOAD NOW »
This 2019 Monthly Planner provides 12 months worth of weekly and daily calendars from January 2019 to December 2019, more space for Goal, Daily schedule, Appointment, To do list and notes. Created and printed in the USA, each book features premium grade interior paper that can stand up to any marker or pen. The elegant, modern cover will look lovely on top of your desk or in your backpack. Features: Stylish Beautiful Composition with geometric style cover Printed in the USA Perfectly sized at 8.5" x 11" 12 months: January-December 2019 You can use for personal, work, to do list, small diary for note of the day and all purposes. Monthly and Weekly Action plan One month per each two page spread with unruled daily blocks. Printed on quality paper. Light weight. Easy to carry around. Best for Black Friday, Cyber Monday, Thanksgiving, Christmas gift and New Year gift. Everyone need to have the best planner since the first of the year.Give it for yourself friends family and co-worker and Have a great year together.

Riemannian Geometry

Riemannian Geometry

  • Author: Sylvestre Gallot,Dominique Hulin,Jacques Lafontaine
  • Publisher: Springer Science & Business Media
  • ISBN: 9783540204930
  • Category: Mathematics
  • Page: 322
  • View: 518
DOWNLOAD NOW »
Many years have passed since the ?rst edition. However, the encouragements of various readers and friends have persuaded us to write this third edition. During these years, Riemannian Geometry has undergone many dramatic - velopments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our “mentor” Marcel Berger. However,R- mannian Geometry is not only a fascinating ?eld in itself. It has proved to be a precious tool in other parts of mathematics. In this respect, we can quote the major breakthroughs in four-dimensional topology which occurred in the eighties and the nineties of the last century (see for instance [L2]). These have been followed, quite recently, by a possibly successful approach to the Poincar ́ e conjecture. In another direction, Geometric Group Theory, a very active ?eld nowadays (cf. [Gr6]), borrows many ideas from Riemannian or metric geometry. Butletusstophoggingthelimelight.Thisisjustatextbook.Wehopethatour point of view of working intrinsically with manifolds as early as possible, and testingeverynewnotiononaseriesofrecurrentexamples(seetheintroduction to the ?rst edition for a detailed description), can be useful both to beginners and to mathematicians from other ?elds, wanting to acquire some feeling for the subject.

Differentialgeometrie

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

  • Author: Wolfgang Kühnel
  • Publisher: Springer-Verlag
  • ISBN: 3658006153
  • Category: Mathematics
  • Page: 284
  • View: 2472
DOWNLOAD NOW »
Dieses Buch ist eine Einführung in die Differentialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und zweisemestrig). Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Bei der Neuauflage wurden einige zusätzliche Lösungen zu den Übungsaufgaben ergänzt.

Computer Graphics and Geometric Modelling

Computer Graphics and Geometric Modelling

Mathematics

  • Author: Max K. Agoston
  • Publisher: Springer Science & Business Media
  • ISBN: 9781852338176
  • Category: Computers
  • Page: 959
  • View: 5481
DOWNLOAD NOW »
The second book of a two-volume work in which the author presents an overview of computer graphics as seen in the context of geometric modeling and the mathematics required to understand the subject.

The Geometry of Syzygies

The Geometry of Syzygies

A Second Course in Algebraic Geometry and Commutative Algebra

  • Author: David Eisenbud
  • Publisher: Springer Science & Business Media
  • ISBN: 0387264566
  • Category: Mathematics
  • Page: 246
  • View: 3210
DOWNLOAD NOW »
First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.

Flavors of Geometry

Flavors of Geometry

  • Author: Silvio Levy
  • Publisher: Cambridge University Press
  • ISBN: 9780521629621
  • Category: Mathematics
  • Page: 194
  • View: 1755
DOWNLOAD NOW »
Lectures on hyperbolic geometry, dynamics in several complex variables, convex geometry, and volume estimation.

Advances in Analysis and Geometry

Advances in Analysis and Geometry

New Developments Using Clifford Algebras

  • Author: Tao Qian,Thomas Hempfling,Alan McIntosh,Franciscus Sommen
  • Publisher: Birkhäuser
  • ISBN: 3034878389
  • Category: Mathematics
  • Page: 376
  • View: 9837
DOWNLOAD NOW »
At the heart of Clifford analysis is the study of systems of special partial differential operators that arise naturally from the use of Clifford algebra as a calculus tool. This book focuses on the study of Dirac operators and related ones, together with applications in mathematics, physics and engineering. This book collects refereed papers from a satellite conference to the ICM 2002, plus invited contributions. All articles contain unpublished new results.

Non-Euclidean Geometries

Non-Euclidean Geometries

János Bolyai Memorial Volume

  • Author: András Prékopa,Emil Molnár
  • Publisher: Springer Science & Business Media
  • ISBN: 0387295550
  • Category: Mathematics
  • Page: 506
  • View: 8790
DOWNLOAD NOW »
"From nothing I have created a new different world," wrote János Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the course of mathematics, opened the way for modern physical theories of the twentieth century, and had an impact on the history of human culture. The papers in this volume, which commemorates the 200th anniversary of the birth of János Bolyai, were written by leading scientists of non-Euclidean geometry, its history, and its applications. Some of the papers present new discoveries about the life and works of János Bolyai and the history of non-Euclidean geometry, others deal with geometrical axiomatics; polyhedra; fractals; hyperbolic, Riemannian and discrete geometry; tilings; visualization; and applications in physics.

Das BUCH der Beweise

Das BUCH der Beweise

  • Author: Martin Aigner,Günter M. Ziegler
  • Publisher: Springer-Verlag
  • ISBN: 3662577674
  • Category: Mathematics
  • Page: 360
  • View: 7552
DOWNLOAD NOW »
Diese fünfte deutsche Auflage enthält ein ganz neues Kapitel über van der Waerdens Permanenten-Vermutung, sowie weitere neue, originelle und elegante Beweise in anderen Kapiteln. Aus den Rezensionen: “... es ist fast unmöglich, ein Mathematikbuch zu schreiben, das von jedermann gelesen und genossen werden kann, aber Aigner und Ziegler gelingt diese Meisterleistung in virtuosem Stil. [...] Dieses Buch erweist der Mathematik einen unschätzbaren Dienst, indem es Nicht-Mathematikern vorführt, was Mathematiker meinen, wenn sie über Schönheit sprechen.” Aus der Laudatio für den “Steele Prize for Mathematical Exposition” 2018 "Was hier vorliegt ist eine Sammlung von Beweisen, die in das von Paul Erdös immer wieder zitierte BUCH gehören, das vom lieben (?) Gott verwahrt wird und das die perfekten Beweise aller mathematischen Sätze enthält. Manchmal lässt der Herrgott auch einige von uns Sterblichen in das BUCH blicken, und die so resultierenden Geistesblitze erhellen den Mathematikeralltag mit eleganten Argumenten, überraschenden Zusammenhängen und unerwarteten Volten." www.mathematik.de, Mai 2002 "Eine einzigartige Sammlung eleganter mathematischer Beweise nach der Idee von Paul Erdös, verständlich geschrieben von exzellenten Mathematikern. Dieses Buch gibt anregende Lösungen mit Aha-Effekt, auch für Nicht-Mathematiker." www.vismath.de "Ein prächtiges, äußerst sorgfältig und liebevoll gestaltetes Buch! Erdös hatte die Idee DES BUCHES, in dem Gott die perfekten Beweise mathematischer Sätze eingeschrieben hat. Das hier gedruckte Buch will eine "very modest approximation" an dieses BUCH sein.... Das Buch von Aigner und Ziegler ist gelungen ..." Mathematische Semesterberichte, November 1999 "Wer (wie ich) bislang vergeblich versucht hat, einen Blick ins BUCH zu werfen, wird begierig in Aigners und Zieglers BUCH der Beweise schmökern." www.mathematik.de, Mai 2002

The Beautiful Necessity

The Beautiful Necessity

  • Author: Claude Fayette Bragdon
  • Publisher: Simon and Schuster
  • ISBN: 1627936513
  • Category: Philosophy
  • Page: 64
  • View: 9140
DOWNLOAD NOW »
Written in 1910, The Beautiful Necessity discusses architectural theory by American architect and writer, Claude Fayette Bragdon.