Search Results for "data-analytics-for-beginners-a-beginner-s-guide-to-learn-and-master-data-analytics"

Data Analytics for Beginners

Data Analytics for Beginners

A Beginner's Guide to Learn and Master Data Analytics

  • Author: Robert J. Woz
  • Publisher: Createspace Independent Publishing Platform
  • ISBN: 9781977843135
  • Category: Big data
  • Page: 112
  • View: 6753
DOWNLOAD NOW »
If you are convinced that the world today is producing more data than the previous decades, then you understand that processing yesterday's data for today's use at times is not enough. The level of data analysis that is needed in highly competitive business environment needs to be processed, analyzed and used immediately for businesses to be ahead of their competition. Having this in mind, you need to understand from the ground up, what data is, the different types of data and how you should identify the right data for your business. To help you understand the simple basics of data and how it needs to be analyzed, then Data Analytics for Beginners is the book that you have been waiting for. The size and type of business you are running doesn't matter because after all, it will depend on your ability to understand the data that your business is exposed to so as to make better business decisions for the current working environment and the future. Are there patterns in your business that you cannot see? Do you want to make sense of the shopping trends of your clients to better enrich their experience? Do you want to know your target market even more? Do you want to better derive insights from the feedback your clients give you? These questions can only be answered when you perform a data analysis for your business. Collecting the data is one thing, analyzing them is another matter entirely as it is not something that can be done haphazardly by just looking at the data. If you hope to understand your data well, you need to understand the data you are collecting, the methods to use and the right tools to use when analyzing the data. Inside you will find valuable steps and tools that will help make your information work for you. Do not let yourself get complacent, stop looking at the data that you collect each day and start analyzing your data to move your business up. Get started by buying this book today! Inside you will find How data should be understood? Terms and concepts used in data analysis. Data mining and the different kinds of databases used to store data. How information can be retrieved and manipulated in the database to create a visual representation of what you want to know? The life cycle of data analysis. And more...

Data Analytics for Beginners

Data Analytics for Beginners

Your Ultimate Guide to Learn and Master Data Analysis - Get Your Business Intelligence Right and Accelerate Growth

  • Author: Victor Finch
  • Publisher: Createspace Independent Publishing Platform
  • ISBN: 9781546641919
  • Category:
  • Page: 128
  • View: 4308
DOWNLOAD NOW »
Data Analytics for Beginners Your Ultimate Guide To Learn and Master Data Analytics. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales Leading companies must not only compete on faster ROI within the shortest time but also face stiff competition in this digital frontier age with no boundaries but continual evolution. Time is precious and marketing effort is worthless without information knowledge and precision execution. Have you ever pause and wonder why your marketing effort is not as successful as expected? Data analytics could be your answer to turn sales around. Data analytics provides the only hope for fact-based and insightful-driven decisions can help companies manage their strategic, operating and financial performance. That's why it's no longer tenable to ignore data analytics. This book has been written with a beginner in mind. If that sound good, you just need to pick this book up and get ready to dive into the basic of Data Analytics What you will learn in Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analytics. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales You will be expose to the big picture of Business Intelligence Data Analytics and its competitive advantages You will learn what are the different types of Data Analytics You will what is data mining in details and how can it work for you You will have a practical introduction on the four important steps in Data Analytics and explore the data analytics patterns BONUS #1: 3 Case Studies on how companies implemented BI and Data Analytics to spur new growth in their business. BONUS #2: A NEW exciting frontier for Data Analytics And many more.. This Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analytics. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales is your must have guide to open up the possibility of data analysis could matters to your business. Download Data Analytics For Beginners: Your Ultimate Guide To Learn and Master Data Analytics. Get Your Business Intelligence Right - Accelerate Growth and Close More Sales The Bottom Line: Most businesses are sitting on their huge sales or traffic data and doing nothing about them. If they have ever though of diving deeper into the data, potential "goldmines" could be discover and within easy reach. What are you waiting for? Start today by making the smartest investment you could possibly make. An investment in yourself, your knowledge and your growth. Don't hesitate to pick up your copy today by clicking the BUY NOW button at the top of this page!

Data Science für Dummies

Data Science für Dummies

  • Author: Lillian Pierson
  • Publisher: John Wiley & Sons
  • ISBN: 352780675X
  • Category: Mathematics
  • Page: 382
  • View: 3588
DOWNLOAD NOW »
Daten, Daten, Daten? Sie haben schon Kenntnisse in Excel und Statistik, wissen aber noch nicht, wie all die Datensätze helfen sollen, bessere Entscheidungen zu treffen? Von Lillian Pierson bekommen Sie das dafür notwendige Handwerkszeug: Bauen Sie Ihre Kenntnisse in Statistik, Programmierung und Visualisierung aus. Nutzen Sie Python, R, SQL, Excel und KNIME. Zahlreiche Beispiele veranschaulichen die vorgestellten Methoden und Techniken. So können Sie die Erkenntnisse dieses Buches auf Ihre Daten übertragen und aus deren Analyse unmittelbare Schlüsse und Konsequenzen ziehen.

Data Analytics for Beginners

Data Analytics for Beginners

Practical Guide to Master Data Analytics

  • Author: Tech World
  • Publisher: Createspace Independent Publishing Platform
  • ISBN: 9781547016280
  • Category: Big data
  • Page: 78
  • View: 4906
DOWNLOAD NOW »
DATA ANALYTICS FOR BEGINNERS Are you ready to discover why data analytics is the only hope for fact based decisions? Would you like learn how insightful-driven decisions can help organizations manage their strategic, operation and financial performance that can help them increase their shareholder value? This book explores all the concepts about data analytics that can help any beginner to master data analytics and its applications in several industries. Chapter one provides an overview of data analytics where the foundations of data analytics are explained in details. If you want to get started right away, you'll also learn the requirements for data scientists in this chapter. In chapter two, a detailed discourse on conducting analytic data research is provided to give you a big picture view of how data analytics is done. In chapter three, descriptive statistics is explored where you'll learn measures of central tendency and measures of dispersion. Chapter four reviews all the charts and graphs that you can use to communicate your analytic results. In chapter five, you'll learn the applications of data analysis in organizations. Finally, in chapter six, you'll learn some of the valuable tools that can help you advance your professional career in data analytics. You'll also learn why smart contracts are emerging as the next technologies for smart data analysis. Take action today and discover the power of Data Analytics DOWNLOAD YOUR COPY TODAY

Datenanalyse mit Python

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

  • Author: Wes McKinney
  • Publisher: O'Reilly
  • ISBN: 3960102143
  • Category: Computers
  • Page: 542
  • View: 2970
DOWNLOAD NOW »
Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Statistik-Workshop für Programmierer

Statistik-Workshop für Programmierer

  • Author: Allen B. Downey
  • Publisher: O'Reilly Germany
  • ISBN: 3868993436
  • Category: Computers
  • Page: 160
  • View: 4321
DOWNLOAD NOW »
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Data Science mit Python

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn

  • Author: Jake VanderPlas
  • Publisher: MITP-Verlags GmbH & Co. KG
  • ISBN: 3958456979
  • Category: Computers
  • Page: 552
  • View: 8747
DOWNLOAD NOW »
Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

Routineaufgaben mit Python automatisieren

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger

  • Author: Al Sweigart
  • Publisher: dpunkt.verlag
  • ISBN: 3864919932
  • Category: Computers
  • Page: 576
  • View: 7690
DOWNLOAD NOW »
Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!

Mastering Python for Data Science

Mastering Python for Data Science

  • Author: Samir Madhavan
  • Publisher: Packt Publishing Ltd
  • ISBN: 1784392626
  • Category: Computers
  • Page: 294
  • View: 7699
DOWNLOAD NOW »
Explore the world of data science through Python and learn how to make sense of data About This Book Master data science methods using Python and its libraries Create data visualizations and mine for patterns Advanced techniques for the four fundamentals of Data Science with Python - data mining, data analysis, data visualization, and machine learning Who This Book Is For If you are a Python developer who wants to master the world of data science then this book is for you. Some knowledge of data science is assumed. What You Will Learn Manage data and perform linear algebra in Python Derive inferences from the analysis by performing inferential statistics Solve data science problems in Python Create high-end visualizations using Python Evaluate and apply the linear regression technique to estimate the relationships among variables. Build recommendation engines with the various collaborative filtering algorithms Apply the ensemble methods to improve your predictions Work with big data technologies to handle data at scale In Detail Data science is a relatively new knowledge domain which is used by various organizations to make data driven decisions. Data scientists have to wear various hats to work with data and to derive value from it. The Python programming language, beyond having conquered the scientific community in the last decade, is now an indispensable tool for the data science practitioner and a must-know tool for every aspiring data scientist. Using Python will offer you a fast, reliable, cross-platform, and mature environment for data analysis, machine learning, and algorithmic problem solving. This comprehensive guide helps you move beyond the hype and transcend the theory by providing you with a hands-on, advanced study of data science. Beginning with the essentials of Python in data science, you will learn to manage data and perform linear algebra in Python. You will move on to deriving inferences from the analysis by performing inferential statistics, and mining data to reveal hidden patterns and trends. You will use the matplot library to create high-end visualizations in Python and uncover the fundamentals of machine learning. Next, you will apply the linear regression technique and also learn to apply the logistic regression technique to your applications, before creating recommendation engines with various collaborative filtering algorithms and improving your predictions by applying the ensemble methods. Finally, you will perform K-means clustering, along with an analysis of unstructured data with different text mining techniques and leveraging the power of Python in big data analytics. Style and approach This book is an easy-to-follow, comprehensive guide on data science using Python. The topics covered in the book can all be used in real world scenarios.

Mastering Data Analysis with R

Mastering Data Analysis with R

  • Author: Gergely Daroczi
  • Publisher: Packt Publishing Ltd
  • ISBN: 1783982039
  • Category: Computers
  • Page: 396
  • View: 6932
DOWNLOAD NOW »
Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization About This Book Handle your data with precision and care for optimal business intelligence Restructure and transform your data to inform decision-making Packed with practical advice and tips to help you get to grips with data mining Who This Book Is For If you are a data scientist or R developer who wants to explore and optimize your use of R's advanced features and tools, this is the book for you. A basic knowledge of R is required, along with an understanding of database logic. What You Will Learn Connect to and load data from R's range of powerful databases Successfully fetch and parse structured and unstructured data Transform and restructure your data with efficient R packages Define and build complex statistical models with glm Develop and train machine learning algorithms Visualize social networks and graph data Deploy supervised and unsupervised classification algorithms Discover how to visualize spatial data with R In Detail R is an essential language for sharp and successful data analysis. Its numerous features and ease of use make it a powerful way of mining, managing, and interpreting large sets of data. In a world where understanding big data has become key, by mastering R you will be able to deal with your data effectively and efficiently. This book will give you the guidance you need to build and develop your knowledge and expertise. Bridging the gap between theory and practice, this book will help you to understand and use data for a competitive advantage. Beginning with taking you through essential data mining and management tasks such as munging, fetching, cleaning, and restructuring, the book then explores different model designs and the core components of effective analysis. You will then discover how to optimize your use of machine learning algorithms for classification and recommendation systems beside the traditional and more recent statistical methods. Style and approach Covering the essential tasks and skills within data science, Mastering Data Analysis provides you with solutions to the challenges of data science. Each section gives you a theoretical overview before demonstrating how to put the theory to work with real-world use cases and hands-on examples.

SPSS Statistics for Dummies

SPSS Statistics for Dummies

  • Author: Keith McCormick,Jesus Salcedo
  • Publisher: John Wiley & Sons
  • ISBN: 1118989023
  • Category: Mathematics
  • Page: 384
  • View: 704
DOWNLOAD NOW »
The ultimate beginner's guide to SPSS and statistical analysis SPSS Statistics For Dummies is the fun and friendly guide to mastering SPSS. This book contains everything you need to know to get up and running quickly with this industry-leading software, with clear, helpful guidance on working with both the software and your data. Every chapter of this new edition has been updated with screenshots and steps that align with SPSS 23.0. You'll learn how to set up the software and organize your workflow, then delve deep into analysis to discover the power of SPSS capabilities. You'll discover the mechanics behind the calculations, perform predictive analysis, produce informative graphs, and maximize your data, even if it's been awhile since your last statistics class. SPSS is the leading statistical software for social sciences, marketing, health care, demography, government, education, data mining, and more. This powerful package gives you the tools you need to get more out of your data, and this book is your beginner-friendly guide to getting the most out of the software. Install and configure SPSS and learn the basics of how it works Master the process of getting data into SPSS and manipulating it to produce results See how to display data in dozens of different graphic formats to fit specific needs Make SPSS manufacture the numbers you want and take advantage of the many analysis options Discover ways to customize the SPSS interface and the look of your results, edit graphics and pivot tables, and program SPSS with Command Syntax Statistical analysis is crucial to so many industries, and accuracy and efficiency are crucial. SPSS offers you the capability to deliver, but you still must know how to take utmost advantage of the tools at your fingertips. SPSS Statistics For Dummies shows you how to handle data like a pro, with step-by-step instruction and expert advice.

Big Data

Big Data

Die Revolution, die unser Leben verändern wird

  • Author: Viktor Mayer-Schönberger,Viktor; Cukier Mayer-Schönberger
  • Publisher: Redline Wirtschaft
  • ISBN: 3864144590
  • Category: Political Science
  • Page: 288
  • View: 2252
DOWNLOAD NOW »
Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.

Beginning Data Science with Python and Jupyter

Beginning Data Science with Python and Jupyter

Use powerful industry-standard tools within Jupyter and the Python ecosystem to unlock new, actionable insights from your data

  • Author: Alex Galea
  • Publisher: Packt Publishing Ltd
  • ISBN: 1789534658
  • Category: Computers
  • Page: 194
  • View: 6060
DOWNLOAD NOW »
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book Description Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. What you will learn Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers, and Random Forests Plan a machine learning classification strategy and train classification, models Use validation curves and dimensionality reduction to tune and enhance your models Discover how you can use web scraping to gather and parse your own bespoke datasets Scrape tabular data from web pages and transform them into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is for This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.

Predictive Analytics für Dummies

Predictive Analytics für Dummies

  • Author: Anasse Bari,Mohamed Chaouchi,Tommy Jung
  • Publisher: John Wiley & Sons
  • ISBN: N.A
  • Category:
  • Page: 360
  • View: 2953
DOWNLOAD NOW »

Beginning Data Analysis with Python and Jupyter [Book]

Beginning Data Analysis with Python and Jupyter [Book]

Use Powerful Industry-Standard Tools to Unlock New, Actionable Insight from Your Existing Data

  • Author: Alex Galea
  • Publisher: N.A
  • ISBN: 9781789532029
  • Category: Computers
  • Page: 194
  • View: 3724
DOWNLOAD NOW »
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book Description Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. What you will learn Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers, and Random Forests Plan a machine learning classification strategy and train classification, models Use validation curves and dimensionality reduction to tune and enhance your models Discover how you can use web scraping to gather and parse your own bespoke datasets Scrape tabular data from web pages and transform them into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is for This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.

R

R

Easy R Programming for Beginners, Your Step-by-step Guide to Learning R Progr

  • Author: Felix Alvaro
  • Publisher: N.A
  • ISBN: 9781533685018
  • Category:
  • Page: 156
  • View: 5075
DOWNLOAD NOW »
Learn R Programming Today With This Easy, Step-By-Step Guide! Do you want to learn R Programming? Do you get overwhelmed by complicated lingo and want a guide that is easy to follow, detailed and written to make the process enjoyable? If so, "R: Easy R Programming for Beginners - Your Step-By-Step Guide To Learning R Programming" by Felix Alvaro is THE book for you! It covers the most essential topics you must learn to begin programming with R.With more than two million global users, the R language is rapidly turning into a top programming language specifically in the space of data science as well as statistics. What you are going to learn in this step-by-step beginner's guide is how to master the fundamentals of such a gorgeous open-source programming language which includes vectors, data frames and lists.Not only is the language growing in popularity, but the demand for R Programmers is also rising, with skilled programmers getting paid an average annual salary of $115,000 per year! What Separates This Book From The Rest? What separates this book from all the others out there is the approach to teaching. A lot of the books you will stumble upon simply throw information at you, leaving you confused and stuck.We believe that books of this nature should be easy to grasp and written in jargon-free English you can understand, making you feel confident and allowing you to grasp each topic with ease.To help you achieve this, the guide has been crafted in a step-by-step manner which we feel is the best way for you to learn a new subject, one step at a time. It also includes various images to give you assurance you are going in the right direction, as well as having exercises where you can proudly practice your newly attained skills. You Will Learn The Following: The history of R programming and its benefits How to install R & R Studio and work with code editors The fundamentals of R syntax Function & Arguments R Programming with user packages Organizing data in Vectors Working with Data-Frames and Matrices Creating Lists Effective coding in R Controlling Logical Flow Woking with base graphics Creating Facetted graphics using Lattice And much more! So don't delay it any longer. Take this opportunity and invest in this guide now. You will be amazed by the skills you will quickly attain! Buy This Guide Now! See you inside!

big data @ work

big data @ work

Chancen erkennen, Risiken verstehen

  • Author: Thomas H. Davenport
  • Publisher: Vahlen
  • ISBN: 3800648156
  • Category: Fiction
  • Page: 214
  • View: 5353
DOWNLOAD NOW »
Big Data in Unternehmen. Dieses neue Buch gibt Managern ein umfassendes Verständnis dafür, welche Bedeutung Big Data für Unternehmen zukünftig haben wird und wie Big Data tatsächlich genutzt werden kann. Am Ende jedes Kapitels aktivieren Fragen, selbst nach Lösungen für eine erfolgreiche Implementierung und Nutzung von Big Data im eigenen Unternehmen zu suchen. Die Schwerpunkte - Warum Big Data für Sie und Ihr Unternehmen wichtig ist - Wie Big Data Ihre Arbeit, Ihr Unternehmen und Ihre Branche verändern - - wird - Entwicklung einer Big Data-Strategie - Der menschliche Aspekt von Big Data - Technologien für Big Data - Wie Sie erfolgreich mit Big Data arbeiten - Was Sie von Start-ups und Online-Unternehmen lernen können - Was Sie von großen Unternehmen lernen können: Big Data und Analytics 3.0 Der Experte Thomas H. Davenport ist Professor für Informationstechnologie und -management am Babson College und Forschungswissenschaftler am MIT Center for Digital Business. Zudem ist er Mitbegründer und Forschungsdirektor am International Institute for Analytics und Senior Berater von Deloitte Analytics.

Python Crashkurs

Python Crashkurs

Eine praktische, projektbasierte Programmiereinführung

  • Author: Eric Matthes
  • Publisher: dpunkt.verlag
  • ISBN: 3960881460
  • Category: Computers
  • Page: 622
  • View: 528
DOWNLOAD NOW »
"Python Crashkurs" ist eine kompakte und gründliche Einführung, die es Ihnen nach kurzer Zeit ermöglicht, Python-Programme zu schreiben, die für Sie Probleme lösen oder Ihnen erlauben, Aufgaben mit dem Computer zu erledigen. In der ersten Hälfte des Buches werden Sie mit grundlegenden Programmierkonzepten wie Listen, Wörterbücher, Klassen und Schleifen vertraut gemacht. Sie erlernen das Schreiben von sauberem und lesbarem Code mit Übungen zu jedem Thema. Sie erfahren auch, wie Sie Ihre Programme interaktiv machen und Ihren Code testen, bevor Sie ihn einem Projekt hinzufügen. Danach werden Sie Ihr neues Wissen in drei komplexen Projekten in die Praxis umsetzen: ein durch "Space Invaders" inspiriertes Arcade-Spiel, eine Datenvisualisierung mit Pythons superpraktischen Bibliotheken und eine einfache Web-App, die Sie online bereitstellen können. Während der Arbeit mit dem "Python Crashkurs" lernen Sie, wie Sie: - leistungsstarke Python-Bibliotheken und Tools richtig einsetzen – einschließlich matplotlib, NumPy und Pygal - 2D-Spiele programmieren, die auf Tastendrücke und Mausklicks reagieren, und die schwieriger werden, je weiter das Spiel fortschreitet - mit Daten arbeiten, um interaktive Visualisierungen zu generieren - Web-Apps erstellen und anpassen können, um diese sicher online zu deployen - mit Fehlern umgehen, die häufig beim Programmieren auftreten Dieses Buch wird Ihnen effektiv helfen, Python zu erlernen und eigene Programme damit zu entwickeln. Warum länger warten? Fangen Sie an!

Beginning Data Science with R

Beginning Data Science with R

  • Author: Manas A. Pathak
  • Publisher: Springer
  • ISBN: 3319120662
  • Category: Mathematics
  • Page: 157
  • View: 1399
DOWNLOAD NOW »
“We live in the age of data. In the last few years, the methodology of extracting insights from data or "data science" has emerged as a discipline in its own right. The R programming language has become one-stop solution for all types of data analysis. The growing popularity of R is due its statistical roots and a vast open source package library. The goal of “Beginning Data Science with R” is to introduce the readers to some of the useful data science techniques and their implementation with the R programming language. The book attempts to strike a balance between the how: specific processes and methodologies, and understanding the why: going over the intuition behind how a particular technique works, so that the reader can apply it to the problem at hand. This book will be useful for readers who are not familiar with statistics and the R programming language.