Search Results for "embedded-systems-architecture-second-edition-a-comprehensive-guide-for-engineers-and-programmers"

Embedded Systems Architecture

Embedded Systems Architecture

A Comprehensive Guide for Engineers and Programmers

  • Author: Tammy Noergaard
  • Publisher: Newnes
  • ISBN: 0123821975
  • Category: Computers
  • Page: 672
  • View: 8347
DOWNLOAD NOW »
Embedded Systems Architecture is a practical and technical guide to understanding the components that make up an embedded system’s architecture. This book is perfect for those starting out as technical professionals such as engineers, programmers and designers of embedded systems; and also for students of computer science, computer engineering and electrical engineering. It gives a much-needed ‘big picture’ for recently graduated engineers grappling with understanding the design of real-world systems for the first time, and provides professionals with a systems-level picture of the key elements that can go into an embedded design, providing a firm foundation on which to build their skills. Real-world approach to the fundamentals, as well as the design and architecture process, makes this book a popular reference for the daunted or the inexperienced: if in doubt, the answer is in here! Fully updated with new coverage of FPGAs, testing, middleware and the latest programming techniques in C, plus complete source code and sample code, reference designs and tools online make this the complete package Visit the companion web site at http://booksite.elsevier.com/9780123821966/ for source code, design examples, data sheets and more A true introductory book, provides a comprehensive get up and running reference for those new to the field, and updating skills: assumes no prior knowledge beyond undergrad level electrical engineering Addresses the needs of practicing engineers, enabling it to get to the point more directly, and cover more ground. Covers hardware, software and middleware in a single volume Includes a library of design examples and design tools, plus a complete set of source code and embedded systems design tutorial materials from companion website

Embedded Systems Architecture

Embedded Systems Architecture

A Comprehensive Guide for Engineers and Programmers

  • Author: Tammy Noergaard
  • Publisher: Elsevier
  • ISBN: 0080491243
  • Category: Computers
  • Page: 656
  • View: 4346
DOWNLOAD NOW »
This comprehensive textbook provides a broad and in-depth overview of embedded systems architecture for engineering students and embedded systems professionals. The book is well suited for undergraduate embedded systems courses in electronics/electrical engineering and engineering technology (EET) departments in universities and colleges, as well as for corporate training of employees. The book is a readable and practical guide covering embedded hardware, firmware, and applications. It clarifies all concepts with references to current embedded technology as it exists in the industry today, including many diagrams and applicable computer code. Among the topics covered in detail are: · hardware components, including processors, memory, buses, and I/O · system software, including device drivers and operating systems · use of assembly language and high-level languages such as C and Java · interfacing and networking · case studies of real-world embedded designs · applicable standards grouped by system application * Without a doubt the most accessible, comprehensive yet comprehensible book on embedded systems ever written! * Leading companies and universities have been involved in the development of the content * An instant classic!

Embedded Systems Architecture

Embedded Systems Architecture

A Comprehensive Guide for Engineers and Programmers

  • Author: Tammy Noergaard
  • Publisher: Newnes
  • ISBN: 0750677929
  • Category: Technology & Engineering
  • Page: 640
  • View: 1127
DOWNLOAD NOW »
This comprehensive textbook provides a broad and in-depth overview of embedded systems architecture for engineering students and embedded systems professionals. The book is well-suited for undergraduate embedded systems courses in electronics/electrical engineering and engineering technology (EET) departments in universities and colleges, and for corporate training of employees. The book is a readable and practical guide covering embedded hardware, firmware, and applications. It clarifies all concepts with references to current embedded technology as it exists in the industry today, including many diagrams and applicable computer code. Among the topics covered in detail are: hardware components, including processors, memory, buses, and I/O system software, including device drivers and operating systems use of assembly language and high-level languages such as C and Java interfacing and networking case studies of real-world embedded designs applicable standards grouped by system application The CD-ROM accompanying the text contains source code for the design examples and numerous design tools useful to both students and professionals. A detailed laboratory manual suitable for a lab course in embedded systems design is also provided. Ancillaries also include a solutions manual and technical slides. * without a doubt the most accessible, comprehensive yet comprehensible book on embedded systems ever written! * leading companies and universities have been involved in the development of the content * an instant classic!

Software Engineering for Embedded Systems

Software Engineering for Embedded Systems

Methods, Practical Techniques, and Applications

  • Author: Robert Oshana
  • Publisher: Newnes
  • ISBN: 0124159419
  • Category: Computers
  • Page: 1200
  • View: 7226
DOWNLOAD NOW »
This Expert Guide gives you the techniques and technologies in software engineering to optimally design and implement your embedded system. Written by experts with a solutions focus, this encyclopedic reference gives you an indispensable aid to tackling the day-to-day problems when using software engineering methods to develop your embedded systems. With this book you will learn: The principles of good architecture for an embedded system Design practices to help make your embedded project successful Details on principles that are often a part of embedded systems, including digital signal processing, safety-critical principles, and development processes Techniques for setting up a performance engineering strategy for your embedded system software How to develop user interfaces for embedded systems Strategies for testing and deploying your embedded system, and ensuring quality development processes Practical techniques for optimizing embedded software for performance, memory, and power Advanced guidelines for developing multicore software for embedded systems How to develop embedded software for networking, storage, and automotive segments How to manage the embedded development process Includes contributions from: Frank Schirrmeister, Shelly Gretlein, Bruce Douglass, Erich Styger, Gary Stringham, Jean Labrosse, Jim Trudeau, Mike Brogioli, Mark Pitchford, Catalin Dan Udma, Markus Levy, Pete Wilson, Whit Waldo, Inga Harris, Xinxin Yang, Srinivasa Addepalli, Andrew McKay, Mark Kraeling and Robert Oshana. Road map of key problems/issues and references to their solution in the text Review of core methods in the context of how to apply them Examples demonstrating timeless implementation details Short and to- the- point case studies show how key ideas can be implemented, the rationale for choices made, and design guidelines and trade-offs

Embedded Systems Design with Platform FPGAs

Embedded Systems Design with Platform FPGAs

Principles and Practices

  • Author: Ronald Sass,Andrew G. Schmidt
  • Publisher: Morgan Kaufmann
  • ISBN: 9780080921785
  • Category: Computers
  • Page: 408
  • View: 9519
DOWNLOAD NOW »
Embedded Systems Design with Platform FPGAs introduces professional engineers and students alike to system development using Platform FPGAs. The focus is on embedded systems but it also serves as a general guide to building custom computing systems. The text describes the fundamental technology in terms of hardware, software, and a set of principles to guide the development of Platform FPGA systems. The goal is to show how to systematically and creatively apply these principles to the construction of application-specific embedded system architectures. There is a strong focus on using free and open source software to increase productivity. Each chapter is organized into two parts. The white pages describe concepts, principles, and general knowledge. The gray pages provide a technical rendition of the main issues of the chapter and show the concepts applied in practice. This includes step-by-step details for a specific development board and tool chain so that the reader can carry out the same steps on their own. Rather than try to demonstrate the concepts on a broad set of tools and boards, the text uses a single set of tools (Xilinx Platform Studio, Linux, and GNU) throughout and uses a single developer board (Xilinx ML-510) for the examples. Explains how to use the Platform FPGA to meet complex design requirements and improve product performance Presents both fundamental concepts together with pragmatic, step-by-step instructions for building a system on a Platform FPGA Includes detailed case studies, extended real-world examples, and lab exercises

Design Patterns for Embedded Systems in C

Design Patterns for Embedded Systems in C

An Embedded Software Engineering Toolkit

  • Author: Bruce Powel Douglass
  • Publisher: Elsevier
  • ISBN: 9780080959719
  • Category: Computers
  • Page: 472
  • View: 4454
DOWNLOAD NOW »
A recent survey stated that 52% of embedded projects are late by 4-5 months. This book can help get those projects in on-time with design patterns. The author carefully takes into account the special concerns found in designing and developing embedded applications specifically concurrency, communication, speed, and memory usage. Patterns are given in UML (Unified Modeling Language) with examples including ANSI C for direct and practical application to C code. A basic C knowledge is a prerequisite for the book while UML notation and terminology is included. General C programming books do not include discussion of the contraints found within embedded system design. The practical examples give the reader an understanding of the use of UML and OO (Object Oriented) designs in a resource-limited environment. Also included are two chapters on state machines. The beauty of this book is that it can help you today. . Design Patterns within these pages are immediately applicable to your project Addresses embedded system design concerns such as concurrency, communication, and memory usage Examples contain ANSI C for ease of use with C programming code

Embedded Systems 2E

Embedded Systems 2E

  • Author: Raj Kamal
  • Publisher: Tata McGraw-Hill Education
  • ISBN: 9780070667648
  • Category: Embedded computer systems
  • Page: 681
  • View: 9039
DOWNLOAD NOW »

ARM System Developer's Guide

ARM System Developer's Guide

Designing and Optimizing System Software

  • Author: Andrew Sloss,Dominic Symes,Chris Wright
  • Publisher: Elsevier
  • ISBN: 9780080490496
  • Category: Computers
  • Page: 689
  • View: 9755
DOWNLOAD NOW »
Over the last ten years, the ARM architecture has become one of the most pervasive architectures in the world, with more than 2 billion ARM-based processors embedded in products ranging from cell phones to automotive braking systems. A world-wide community of ARM developers in semiconductor and product design companies includes software developers, system designers and hardware engineers. To date no book has directly addressed their need to develop the system and software for an ARM-based system. This text fills that gap. This book provides a comprehensive description of the operation of the ARM core from a developer’s perspective with a clear emphasis on software. It demonstrates not only how to write efficient ARM software in C and assembly but also how to optimize code. Example code throughout the book can be integrated into commercial products or used as templates to enable quick creation of productive software. The book covers both the ARM and Thumb instruction sets, covers Intel's XScale Processors, outlines distinctions among the versions of the ARM architecture, demonstrates how to implement DSP algorithms, explains exception and interrupt handling, describes the cache technologies that surround the ARM cores as well as the most efficient memory management techniques. A final chapter looks forward to the future of the ARM architecture considering ARMv6, the latest change to the instruction set, which has been designed to improve the DSP and media processing capabilities of the architecture. * No other book describes the ARM core from a system and software perspective. * Author team combines extensive ARM software engineering experience with an in-depth knowledge of ARM developer needs. * Practical, executable code is fully explained in the book and available on the publisher's Website. * Includes a simple embedded operating system.

Professional Embedded ARM Development

Professional Embedded ARM Development

  • Author: James A. Langbridge
  • Publisher: John Wiley & Sons
  • ISBN: 1118887824
  • Category: Computers
  • Page: 285
  • View: 1338
DOWNLOAD NOW »
A practical Wrox guide to ARM programming for mobile devices With more than 90 percent of mobile phones sold in recent years using ARM-based processors, developers are eager to master this embedded technology. If you know the basics of C programming, this guide will ease you into the world of embedded ARM technology. With clear explanations of the systems common to all ARM processors and step-by-step instructions for creating an embedded application, it prepares you for this popular specialty. While ARM technology is not new, existing books on the topic predate the current explosive growth of mobile devices using ARM and don't cover these all-important aspects. Newcomers to embedded technology will find this guide approachable and easy to understand. Covers the tools required, assembly and debugging techniques, C optimizations, and more Lists the tools needed for various types of projects and explores the details of the assembly language Examines the optimizations that can be made to ensure fast code Provides step-by-step instructions for a basic application and shows how to build upon it Professional Embedded ARM Development prepares you to enter this exciting and in-demand programming field.

Programming Embedded Systems

Programming Embedded Systems

With C and GNU Development Tools

  • Author: Michael Barr,Anthony Massa
  • Publisher: "O'Reilly Media, Inc."
  • ISBN: 0596009836
  • Category: Computers
  • Page: 301
  • View: 6643
DOWNLOAD NOW »
Authored by two of the leading authorities in the field, this guide offers readers the knowledge and skills needed to achieve proficiency with embedded software.

Programming Embedded Systems in C and C++

Programming Embedded Systems in C and C++

  • Author: Michael Barr
  • Publisher: "O'Reilly Media, Inc."
  • ISBN: 9781565923546
  • Category: Computers
  • Page: 174
  • View: 4034
DOWNLOAD NOW »
An introduction to embedding systems for C and C++++ programmers encompasses such topics as testing memory devices, writing and erasing Flash memory, verifying nonvolatile memory contents, and much more. Original. (Intermediate).

The Windows 2000 Device Driver Book

The Windows 2000 Device Driver Book

A Guide for Programmers

  • Author: Art Baker,Jerry Lozano
  • Publisher: Prentice Hall Professional
  • ISBN: 9780130204318
  • Category: Computers
  • Page: 446
  • View: 3720
DOWNLOAD NOW »
Preface This book explains how to write, install, and debug device drivers for Windows 2000. It is intended to be a companion to the Microsoft DDK documentation and software. Windows 2000 represents a major improvement to previous versions of Windows NT. Device drivers for Windows 2000 may be designed for the new Windows Driver Model (WDM) architecture. If so, the driver will be source compatible with Windows 98. This book covers the new WDM specification. This book will also prove useful to those studying the internals of Windows 2000, particularly the I/O subsystem and related components. What You Should Already Know All instruction assumes a base knowledge level. First, the reader should be familiar with Windows 2000 administration—security and setup, for example. Since experimentation with kernel-mode code can (and will) cause system problems, the reader should be prepared and able to restore a chaotic OS. Second, the reader should be competent in the C programming language and somewhat familiar with C++. Only a little C++ is used in this book, and then only for the purpose of simplifying tedious code. Third, experience with Win32 user-mode programming is useful. Knowing how user-mode codedrivesI/O devices is useful in designing and testing device driver code. The test code for the examples in this book rely on the console subsystem model for Windows. To review this topic, the reader is referred to theWin32 Programmers Reference, particularly the chapters on I/O primitives (CreateFile, ReadFile, WriteFile, and DeviceIoControl). The bibliography lists other references for this topic. Finally, while no specific prior knowledge of hardware or device driver software design is assumed, it would be useful if the reader had experience with some aspect of low-level device interfacing. For example, knowledge of writing device drivers for a Unix system will prove quite useful when reading this book. What's Covered The focus of this book is to first explain thearchitectureof the hardware, environment, and device driver, and then to explain thedetailsof writing code. Chapters are grouped within this book as follows: Chapters 1-5: The first five chapters of this book cover the foundation of what's needed to write a device driver. This includes coverage of the Windows 2000 architecture, hardware terminology and bus basics, and an in-depth view of the Windows 2000 I/O Manager and related services. Chapters 6-13: The next eight chapters form the nucleus of this book. The chapters cover everything from the mechanics of building a driver to the specifics of instrumenting a driver to log errors and other events. Chapters 14-15: These two chapters deal with somewhat more advanced topics within device driver construction. This includes the use of system threads, layering, filtering, and utilizing driver classes. Chapters 16-17: The final chapters deal with the practical but necessary details of driver installation and debugging. The use of Windows 2000 INF files for "automatic" installation of a plug and play device driver is covered (as well as manual installation for legacy devices). The use of WinDbg is covered in sufficient detail so that the programmer can actually perform interactive debugging. Appendices: The appendices cover reference information needed for driver development. The mechanics of Windows 2000 symbol file installation, bugcheck codes, and so on are listed. What's Not Since the purpose of this book is to cover driver development from "the ground up," some specific topics fall outside its scope. Specifically, the list of topics not covered includes File system drivers Currently, the construction of a full Windows 2000 Installable File System requires the acquisition of the Microsoft IFS kit. The bibliography of this book points to one source for more information on this topic. Potential users of the IFS kit will benefit greatly from this book, as the material covered is essential prerequisite knowledge. Device-specific driver information The construction of NIC (Network Interface Card), SCSI, video (including capture devices), printers, and multimedia drivers is not specifically covered in this book. Chapter 1 discusses the architectural implications of such drivers, but even individual chapters on each of these driver types would seriously shortchange the requisite knowledge. Virtual DOS device drivers The current wave of driver development is toward the WDM 32-bit model. Legacy 16-bit VDDs are no longer of interest. About the Sample Code Most chapters in this book include one or more sample drivers. All code is included on the accompanying CD. Samples for each chapter are in separate subdirectories on the CD, so installation of individual projects is straightforward. The CD also includes a device driver application wizard for Microsoft Visual C++ version 6. This wizard configures the build environment so that code can be written, compiled, and linked within Visual Studio. Platform dependencies: The sample code included with this book has been targeted and tested on Intel platforms only. Since it appears that the last non-Intel platform (Alpha) was dropped from the final release of Windows 2000, this should come as no surprise. Be advised, however, that Windows 2000 is intrinsically a platform-independent OS. It is a straightforward process to port the OS to many modern hardware sets. Driver writers should consider designs that take advantage of the Windows 2000 abstractions that permit source compatibility with non-Intel platforms. To build and run the examples: Besides the Microsoft DDK (Device Driver Kit) (which is available on an MSDN subscription or, at present, free for download from the Microsoft web site atwww.microsoft.com/DDK), the sample code assumes that Microsoft Visual C++ is installed. The device driver application wizard was built for Visual Studio version 6. Obviously, with some effort the sample code can be built using other vendors' compilers. Of course, an installed version of Windows 2000 (Professional, Server, or Enterprise) is required. For interactive debugging using WinDbg, a second host platform is required. History of this Book The first version of this book was written by Art Baker, entitledThe Windows NT Device Driver Book. By any account, the book was required reading for any NT driver author. The Microsoft driver model is a continuously moving target. As such, recently introduced books on this subject provided more and up-to-date information. The goal of this revision of the book is to carry forward the goals, style, and clarity of Art's original work while updating the material with the very latest information available from Microsoft. If you are a previous reader of the original version of this book, I hope you will find this version just as useful. I have attempted to provide accurate, concise, and clear information on the subject of Windows 2000 device drivers. While I have relied heavily on Art's original work, any errors present in this book are entirely mine. Training and Consulting Services The material in this book is based on training and consulting performed for various companies within the industry. The subject matter of this book is presented exclusively by UCI in the format of a five-day instructor-lead lecture/lab course. The course is available as public or on site classes. UCI provides comprehensive training in high-end programming, web development and administration, databases, and system technologies. For more information please visit the UCI web site atwww.ucitraining.comor use the address information below: UCI Corporation 4 Constitution Way Suite G Woburn, MA 01801 1-800-884-1772 The revision author, Jerry Lozano, provides seminars and workshops on the topic of device drivers and other related subjects. For more information visit the web site:www.StarJourney.com

Real-Time Systems

Real-Time Systems

Design Principles for Distributed Embedded Applications

  • Author: Hermann Kopetz
  • Publisher: Springer Science & Business Media
  • ISBN: 0306470551
  • Category: Computers
  • Page: 338
  • View: 4707
DOWNLOAD NOW »
7. 6 Performance Comparison: ET versus TT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7. 7 The Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Points to Remember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Review Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Chapter 8: The Time-Triggered Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8. 1 Introduction to Time-Triggered Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 8. 2 Overview of the TTP/C Protocol Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 8. 3 TheBasic CNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Internal Operation of TTP/C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 8. 4 8. 5 TTP/A for Field Bus Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Points to Remember. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Review Questions and Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Chapter 9: Input/Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 9. 1 The Dual Role of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 9. 2 Agreement Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 9. 3 Sampling and Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 9. 4 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 9. 5 Sensors and Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 9. 6 Physical Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Points to Remember. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Review Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Chapter 10: Real-Time Operating Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 10. 1 Task Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 10. 2 Interprocess Communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10. 3 Time Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10. 4 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 10. 5 A Case Study: ERCOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Points to Remember. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Review Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Chapter 11: Real-Time Scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 11. 1 The Scheduling Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 11. 2 The Adversary Argument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 11. 3 Dynamic Scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 x TABLE OF CONTENTS 11. 4 Static Scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Points to Remember. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Review Questions and Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Chapter 12: Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 12. 1 Building aConvincing Safety Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 12. 2 Formal Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 12. 3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MSP430-based Robot Applications

MSP430-based Robot Applications

A Guide to Developing Embedded Systems

  • Author: Dan Harres
  • Publisher: Newnes
  • ISBN: 0123972965
  • Category: Computers
  • Page: 416
  • View: 7483
DOWNLOAD NOW »
This book provides a careful explanation of the basic areas of electronics and computer architecture, along with lots of examples, to demonstrate the interface, sensor design, programming and microcontroller peripheral setup necessary for embedded systems development. With no need for mechanical knowledge of robots, the book starts by demonstrating how to modify a simple radio-controlled car to create a basic robot. The fundamental electronics of the MSP430 are described, along with programming details in both C and assembly language, and full explanations of ports, timing, and data acquisition. Further chapters cover inexpensive ways to perform circuit simulation and prototyping. Key features include: Thorough treatment of the MSP430’s architecture and functionality along with detailed application-specific guidance Programming and the use of sensor technology to build an embedded system A learn-by-doing experience With this book you will learn: The basic theory for electronics design - Analog circuits - Digital logic - Computer arithmetic - Microcontroller programming How to design and build a working robot Assembly language and C programming How to develop your own high-performance embedded systems application using an on-going robotics application Teaches how to develop your own high-performance embedded systems application using an on-going robotics application Thorough treatment of the MSP430’s architecture and functionality along with detailed application-specific guidance Focuses on electronics, programming and the use of sensor technology to build an embedded system Covers assembly language and C programming

Patterns for Time-triggered Embedded Systems

Patterns for Time-triggered Embedded Systems

Building Reliable Applications with the 8051 Family of Microcontrollers

  • Author: Michael J. Pont
  • Publisher: Addison-Wesley Longman
  • ISBN: 9780201331387
  • Category: Computers
  • Page: 1000
  • View: 371
DOWNLOAD NOW »
CD-ROM contains: Source code in 'C' for patterns and examples -- Evaluation version of the industry-standard Keil 'C' compiler and hardware simulator.

Building Embedded Systems

Building Embedded Systems

Programmable Hardware

  • Author: Changyi Gu
  • Publisher: Apress
  • ISBN: 1484219198
  • Category: Computers
  • Page: 322
  • View: 8371
DOWNLOAD NOW »
Develop the software and hardware you never think about. We're talking about the nitty-gritty behind the buttons on your microwave, inside your thermostat, inside the keyboard used to type this description, and even running the monitor on which you are reading it now. Such stuff is termed embedded systems, and this book shows how to design and develop embedded systems at a professional level. Because yes, many people quietly make a successful career doing just that. Building embedded systems can be both fun and intimidating. Putting together an embedded system requires skill sets from multiple engineering disciplines, from software and hardware in particular. Building Embedded Systems is a book about helping you do things in the right way from the beginning of your first project: Programmers who know software will learn what they need to know about hardware. Engineers with hardware knowledge likewise will learn about the software side. Whatever your background is, Building Embedded Systems is the perfect book to fill in any knowledge gaps and get you started in a career programming for everyday devices. Author Changyi Gu brings more than fifteen years of experience in working his way up the ladder in the field of embedded systems. He brings knowledge of numerous approaches to embedded systems design, including the System on Programmable Chips (SOPC) approach that is currently growing to dominate the field. His knowledge and experience make Building Embedded Systems an excellent book for anyone wanting to enter the field, or even just to do some embedded programming as a side project. What You Will Learn Program embedded systems at the hardware level Learn current industry practices in firmware development Develop practical knowledge of embedded hardware options Create tight integration between software and hardware Practice a work flow leading to successful outcomes Build from transistor level to the system level Make sound choices between performance and cost Who This Book Is For Embedded-system engineers and intermediate electronics enthusiasts who are seeking tighter integration between software and hardware. Those who favor the System on a Programmable Chip (SOPC) approach will in particular benefit from this book. Students in both Electrical Engineering and Computer Science can also benefit from this book and the real-life industry practice it provides.

Designing Embedded Hardware

Designing Embedded Hardware

Create New Computers and Devices

  • Author: John Catsoulis
  • Publisher: "O'Reilly Media, Inc."
  • ISBN: 9781449379032
  • Category: Computers
  • Page: 398
  • View: 1127
DOWNLOAD NOW »
Embedded computer systems literally surround us: they're in our cell phones, PDAs, cars, TVs, refrigerators, heating systems, and more. In fact, embedded systems are one of the most rapidly growing segments of the computer industry today.Along with the growing list of devices for which embedded computer systems are appropriate, interest is growing among programmers, hobbyists, and engineers of all types in how to design and build devices of their own. Furthermore, the knowledge offered by this book into the fundamentals of these computer systems can benefit anyone who has to evaluate and apply the systems.The second edition of Designing Embedded Hardware has been updated to include information on the latest generation of processors and microcontrollers, including the new MAXQ processor. If you're new to this and don't know what a MAXQ is, don't worry--the book spells out the basics of embedded design for beginners while providing material useful for advanced systems designers.Designing Embedded Hardware steers a course between those books dedicated to writing code for particular microprocessors, and those that stress the philosophy of embedded system design without providing any practical information. Having designed 40 embedded computer systems of his own, author John Catsoulis brings a wealth of real-world experience to show readers how to design and create entirely new embedded devices and computerized gadgets, as well as how to customize and extend off-the-shelf systems.Loaded with real examples, this book also provides a roadmap to the pitfalls and traps to avoid. Designing Embedded Hardware includes: The theory and practice of embedded systems Understanding schematics and data sheets Powering an embedded system Producing and debugging an embedded system Processors such as the PIC, Atmel AVR, and Motorola 68000-series Digital Signal Processing (DSP) architectures Protocols (SPI and I2C) used to add peripherals RS-232C, RS-422, infrared communication, and USB CAN and Ethernet networking Pulse Width Monitoring and motor control If you want to build your own embedded system, or tweak an existing one, this invaluable book gives you the understanding and practical skills you need.

Embedded Computing for High Performance

Embedded Computing for High Performance

Efficient Mapping of Computations Using Customization, Code Transformations and Compilation

  • Author: João Manuel Paiva Cardoso,José Gabriel de Figueiredo Coutinho,Pedro C. Diniz
  • Publisher: Morgan Kaufmann
  • ISBN: 0128041994
  • Category: Computers
  • Page: 320
  • View: 6260
DOWNLOAD NOW »
Embedded Computing for High Performance: Design Exploration and Customization Using High-level Compilation and Synthesis Tools provides a set of real-life example implementations that migrate traditional desktop systems to embedded systems. Working with popular hardware, including Xilinx and ARM, the book offers a comprehensive description of techniques for mapping computations expressed in programming languages such as C or MATLAB to high-performance embedded architectures consisting of multiple CPUs, GPUs, and reconfigurable hardware (FPGAs). The authors demonstrate a domain-specific language (LARA) that facilitates retargeting to multiple computing systems using the same source code. In this way, users can decouple original application code from transformed code and enhance productivity and program portability. After reading this book, engineers will understand the processes, methodologies, and best practices needed for the development of applications for high-performance embedded computing systems. Focuses on maximizing performance while managing energy consumption in embedded systems Explains how to retarget code for heterogeneous systems with GPUs and FPGAs Demonstrates a domain-specific language that facilitates migrating and retargeting existing applications to modern systems Includes downloadable slides, tools, and tutorials

Embedded Systems Circuits and Programming

Embedded Systems Circuits and Programming

  • Author: Julio Sanchez,Maria P. Canton
  • Publisher: CRC Press
  • ISBN: 135183276X
  • Category: Computers
  • Page: 891
  • View: 7913
DOWNLOAD NOW »
During the development of an engineered product, developers often need to create an embedded system—a prototype—that demonstrates the operation/function of the device and proves its viability. Offering practical tools for the development and prototyping phases, Embedded Systems Circuits and Programming provides a tutorial on microcontroller programming and the basics of embedded design. The book focuses on several development tools and resources: Standard and off-the-shelf components, such as input/output devices, integrated circuits, motors, and programmable microcontrollers The implementation of circuit prototypes via breadboards, the in-house fabrication of test-time printed circuit boards (PCBs), and the finalization by the manufactured board Electronic design programs and software utilities for creating PCBs Sample circuits that can be used as part of the targeted embedded system The selection and programming of microcontrollers in the circuit For those working in electrical, electronic, computer, and software engineering, this hands-on guide helps you successfully develop systems and boards that contain digital and analog components and controls. The text includes easy-to-follow sample circuits and their corresponding programs, enabling you to use them in your own work. For critical circuits, the authors provide tested PCB files. Software, code, and other materials are available at www.crcpress.com.

Introduction to Embedded Systems

Introduction to Embedded Systems

A Cyber-Physical Systems Approach

  • Author: Edward Ashford Lee,Sanjit Arunkumar Seshia
  • Publisher: MIT Press
  • ISBN: 0262340526
  • Category: Computers
  • Page: 568
  • View: 4404
DOWNLOAD NOW »
The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems.