Search Results for "foundations-of-linear-and-generalized-linear-models"

Foundations of Linear and Generalized Linear Models

Foundations of Linear and Generalized Linear Models

  • Author: Alan Agresti
  • Publisher: John Wiley & Sons
  • ISBN: 1118730038
  • Category: Mathematics
  • Page: 472
  • View: 3818
DOWNLOAD NOW »
"This book presents an overview of the foundations and the key ideas and results of linear and generalized linear models under one cover. Written by a prolific academic, researcher, and textbook writer, Foundations of Linear and Generalized Linear Modelsis soon to become the gold standard by which all existing textbooks on the topic will be compared. While the emphasis is clearly and succinctly on theoretical underpinnings, applications in "R" are presented when they help to elucidate the content or promote practical model building. Each chapter contains approximately 15-20 exercises, primarily for readers to practice and extend the theory, but, also to assimilate the ideas by doing some data analysis. The carefully crafted models and examples convey basic concepts and do not get mired down in non-trivial considerations. An author-maintained web site includes, among other numerous pedagogical supplements, analyses that parallel the "R" routines from the book in SAS, SPSS and Stata"--

Foundations of Linear and Generalized Linear Models

Foundations of Linear and Generalized Linear Models

  • Author: Alan Agresti
  • Publisher: John Wiley & Sons
  • ISBN: 1118730054
  • Category: Mathematics
  • Page: 472
  • View: 8337
DOWNLOAD NOW »
A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.

Foundations of Linear and Generalized Linear Models

Foundations of Linear and Generalized Linear Models

  • Author: Alan Agresti
  • Publisher: John Wiley & Sons
  • ISBN: 1118730305
  • Category: Mathematics
  • Page: 472
  • View: 3174
DOWNLOAD NOW »
A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.

Generalized Linear Models

Generalized Linear Models

with Applications in Engineering and the Sciences

  • Author: Raymond H. Myers,Douglas C. Montgomery,G. Geoffrey Vining,Timothy J. Robinson
  • Publisher: John Wiley & Sons
  • ISBN: 0470556978
  • Category: Mathematics
  • Page: 544
  • View: 4127
DOWNLOAD NOW »
Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.

A Primer on Linear Models

A Primer on Linear Models

  • Author: John F. Monahan
  • Publisher: CRC Press
  • ISBN: 9781420062045
  • Category: Mathematics
  • Page: 304
  • View: 4222
DOWNLOAD NOW »
A Primer on Linear Models presents a unified, thorough, and rigorous development of the theory behind the statistical methodology of regression and analysis of variance (ANOVA). It seamlessly incorporates these concepts using non-full-rank design matrices and emphasizes the exact, finite sample theory supporting common statistical methods. With coverage steadily progressing in complexity, the text first provides examples of the general linear model, including multiple regression models, one-way ANOVA, mixed-effects models, and time series models. It then introduces the basic algebra and geometry of the linear least squares problem, before delving into estimability and the Gauss–Markov model. After presenting the statistical tools of hypothesis tests and confidence intervals, the author analyzes mixed models, such as two-way mixed ANOVA, and the multivariate linear model. The appendices review linear algebra fundamentals and results as well as Lagrange multipliers. This book enables complete comprehension of the material by taking a general, unifying approach to the theory, fundamentals, and exact results of linear models.

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models

  • Author: Henrik Madsen,Poul Thyregod
  • Publisher: CRC Press
  • ISBN: 1439891141
  • Category: Mathematics
  • Page: 316
  • View: 7888
DOWNLOAD NOW »
Bridging the gap between theory and practice for modern statistical model building, Introduction to General and Generalized Linear Models presents likelihood-based techniques for statistical modelling using various types of data. Implementations using R are provided throughout the text, although other software packages are also discussed. Numerous examples show how the problems are solved with R. After describing the necessary likelihood theory, the book covers both general and generalized linear models using the same likelihood-based methods. It presents the corresponding/parallel results for the general linear models first, since they are easier to understand and often more well known. The authors then explore random effects and mixed effects in a Gaussian context. They also introduce non-Gaussian hierarchical models that are members of the exponential family of distributions. Each chapter contains examples and guidelines for solving the problems via R. Providing a flexible framework for data analysis and model building, this text focuses on the statistical methods and models that can help predict the expected value of an outcome, dependent, or response variable. It offers a sound introduction to general and generalized linear models using the popular and powerful likelihood techniques. Ancillary materials are available at www.imm.dtu.dk/~hm/GLM

Generalized Linear Models and Extensions, Second Edition

Generalized Linear Models and Extensions, Second Edition

  • Author: James William Hardin,Joseph M. Hilbe,Joseph Hilbe
  • Publisher: Stata Press
  • ISBN: 1597180149
  • Category: Computers
  • Page: 387
  • View: 3448
DOWNLOAD NOW »
Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.

Linear Models with R, Second Edition

Linear Models with R, Second Edition

  • Author: Julian J. Faraway
  • Publisher: CRC Press
  • ISBN: 1439887349
  • Category: Mathematics
  • Page: 286
  • View: 9120
DOWNLOAD NOW »
A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.

Richly Parameterized Linear Models

Richly Parameterized Linear Models

Additive, Time Series, and Spatial Models Using Random Effects

  • Author: James S. Hodges
  • Publisher: CRC Press
  • ISBN: 1439866848
  • Category: Mathematics
  • Page: 469
  • View: 7545
DOWNLOAD NOW »
A First Step toward a Unified Theory of Richly Parameterized Linear Models Using mixed linear models to analyze data often leads to results that are mysterious, inconvenient, or wrong. Further compounding the problem, statisticians lack a cohesive resource to acquire a systematic, theory-based understanding of models with random effects. Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects takes a first step in developing a full theory of richly parameterized models, which would allow statisticians to better understand their analysis results. The author examines what is known and unknown about mixed linear models and identifies research opportunities. The first two parts of the book cover an existing syntax for unifying models with random effects. The text explains how richly parameterized models can be expressed as mixed linear models and analyzed using conventional and Bayesian methods. In the last two parts, the author discusses oddities that can arise when analyzing data using these models. He presents ways to detect problems and, when possible, shows how to mitigate or avoid them. The book adapts ideas from linear model theory and then goes beyond that theory by examining the information in the data about the mixed linear model’s covariance matrices. Each chapter ends with two sets of exercises. Conventional problems encourage readers to practice with the algebraic methods and open questions motivate readers to research further. Supporting materials, including datasets for most of the examples analyzed, are available on the author’s website.

Nonparametric Regression and Generalized Linear Models

Nonparametric Regression and Generalized Linear Models

A roughness penalty approach

  • Author: P.J. Green,Bernard. W. Silverman
  • Publisher: CRC Press
  • ISBN: 1482229757
  • Category: Mathematics
  • Page: 184
  • View: 4410
DOWNLOAD NOW »
In recent years, there has been a great deal of interest and activity in the general area of nonparametric smoothing in statistics. This monograph concentrates on the roughness penalty method and shows how this technique provides a unifying approach to a wide range of smoothing problems. The method allows parametric assumptions to be realized in regression problems, in those approached by generalized linear modelling, and in many other contexts. The emphasis throughout is methodological rather than theoretical, and it concentrates on statistical and computation issues. Real data examples are used to illustrate the various methods and to compare them with standard parametric approaches. Some publicly available software is also discussed. The mathematical treatment is self-contained and depends mainly on simple linear algebra and calculus. This monograph will be useful both as a reference work for research and applied statisticians and as a text for graduate students and other encountering the material for the first time.

Regression, ANOVA, and the General Linear Model

Regression, ANOVA, and the General Linear Model

A Statistics Primer

  • Author: Peter Vik
  • Publisher: SAGE Publications
  • ISBN: 1483316017
  • Category: Social Science
  • Page: 344
  • View: 943
DOWNLOAD NOW »
Peter Vik's Regression, ANOVA, and the General Linear Model: A Statistics Primer demonstrates basic statistical concepts from two different perspectives, giving the reader a conceptual understanding of how to interpret statistics and their use. The two perspectives are (1) a traditional focus on the t-test, correlation, and ANOVA, and (2) a model-comparison approach using General Linear Models (GLM). This book juxtaposes the two approaches by presenting a traditional approach in one chapter, followed by the same analysis demonstrated using GLM. By so doing, students will acquire a theoretical and conceptual appreciation for data analysis as well as an applied practical understanding as to how these two approaches are alike.

Statistical Data Analytics

Statistical Data Analytics

Foundations for Data Mining, Informatics, and Knowledge Discovery

  • Author: Walter W. Piegorsch
  • Publisher: John Wiley & Sons
  • ISBN: 1119030668
  • Category: Mathematics
  • Page: 488
  • View: 1548
DOWNLOAD NOW »
A comprehensive introduction to statistical methods for data mining and knowledge discovery. Applications of data mining and ‘big data’ increasingly take center stage in our modern, knowledge-driven society, supported by advances in computing power, automated data acquisition, social media development and interactive, linkable internet software. This book presents a coherent, technical introduction to modern statistical learning and analytics, starting from the core foundations of statistics and probability. It includes an overview of probability and statistical distributions, basics of data manipulation and visualization, and the central components of standard statistical inferences. The majority of the text extends beyond these introductory topics, however, to supervised learning in linear regression, generalized linear models, and classification analytics. Finally, unsupervised learning via dimension reduction, cluster analysis, and market basket analysis are introduced. Extensive examples using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others. Statistical Data Analytics: Focuses on methods critically used in data mining and statistical informatics. Coherently describes the methods at an introductory level, with extensions to selected intermediate and advanced techniques. Provides informative, technical details for the highlighted methods. Employs the open-source R language as the computational vehicle – along with its burgeoning collection of online packages – to illustrate many of the analyses contained in the book. Concludes each chapter with a range of interesting and challenging homework exercises using actual data from a variety of informatic application areas. This book will appeal as a classroom or training text to intermediate and advanced undergraduates, and to beginning graduate students, with sufficient background in calculus and matrix algebra. It will also serve as a source-book on the foundations of statistical informatics and data analytics to practitioners who regularly apply statistical learning to their modern data.

Generalized Linear Models

Generalized Linear Models

An Applied Approach

  • Author: John Patrick Hoffmann
  • Publisher: Pearson College Division
  • ISBN: N.A
  • Category: Mathematics
  • Page: 204
  • View: 7643
DOWNLOAD NOW »
This brief and economical text shows students with relatively little mathematical background how to understand and apply sophisticated linear regression models in their research areas within the social, behavioral, and medical sciences, as well as marketing, and business. Less theoretical than competing texts, Hoffman includes numerous exercises and worked-out examples and sample programs and data sets for three popular statistical software programs: SPSS, SAS, and Stata.

Linear Models in Statistics

Linear Models in Statistics

  • Author: Alvin C. Rencher,G. Bruce Schaalje
  • Publisher: John Wiley & Sons
  • ISBN: 0470192607
  • Category: Mathematics
  • Page: 688
  • View: 5608
DOWNLOAD NOW »
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Modern Applied Statistics with S-PLUS

Modern Applied Statistics with S-PLUS

  • Author: W.N. Venables,B.D. Ripley
  • Publisher: Springer Science & Business Media
  • ISBN: 1475731213
  • Category: Computers
  • Page: 501
  • View: 2465
DOWNLOAD NOW »
This best-selling guide has been completely updated to present the newest features of S-PLUS 5.0, and includes the very latest computationally-intensive methods and techniques. In addition, extensive software libraries, data sets, and complements will be available online. "the task the authors have undertaken is challenginggetting new S/S-Plus users to quickly learn the fundamentals of the language and presenting a modern approach to data analysis through numerous examples from many areas of statistics. They succeed in this" TECHNOMETRICS

Elements of Mathematical Ecology

Elements of Mathematical Ecology

  • Author: Mark Kot
  • Publisher: Cambridge University Press
  • ISBN: 1316584054
  • Category: Nature
  • Page: N.A
  • View: 7334
DOWNLOAD NOW »
Elements of Mathematical Ecology provides an introduction to classical and modern mathematical models, methods, and issues in population ecology. The first part of the book is devoted to simple, unstructured population models that ignore much of the variability found in natural populations for the sake of tractability. Topics covered include density dependence, bifurcations, demographic stochasticity, time delays, population interactions (predation, competition, and mutualism), and the application of optimal control theory to the management of renewable resources. The second part of this book is devoted to structured population models, covering spatially-structured population models (with a focus on reaction-diffusion models), age-structured models, and two-sex models. Suitable for upper level students and beginning researchers in ecology, mathematical biology and applied mathematics, the volume includes numerous clear line diagrams that clarify the mathematics, relevant problems thoughout the text that aid understanding, and supplementary mathematical and historical material that enrich the main text.

Plane Answers to Complex Questions

Plane Answers to Complex Questions

The Theory of Linear Models

  • Author: Ronald Christensen
  • Publisher: Springer Science & Business Media
  • ISBN: 1475724772
  • Category: Mathematics
  • Page: 453
  • View: 1181
DOWNLOAD NOW »
The second edition of Plane Answers has many additions and a couple of deletions. New material includes additional illustrative examples in Ap pendices A and B and Chapters 2 and 3, as well as discussions of Bayesian estimation, near replicate lack of fit tests, testing the independence assump tion, testing variance components, the interblock analysis for balanced in complete block designs, nonestimable constraints, analysis of unreplicated experiments using normal plots, tensors, and properties of Kronecker prod ucts and Vee operators. The book contains an improved discussion of the relation between ANOVA and regression, and an improved presentation of general Gauss-Markov models. The primary material that has been deleted are the discussions of weighted means and of log-linear models. The mate rial on log-linear models was included in Christensen (1990b), so it became redundant here. Generally, I have tried to clean up the presentation of ideas wherever it seemed obscure to me. Much of the work on the second edition was done while on sabbatical at the University of Canterbury in Christchurch, New Zealand. I would par ticularly like to thank John Deely for arranging my sabbatical. Through their comments and criticisms, four people were particularly helpful in con structing this new edition. I would like to thank Wes Johnson, Snehalata Huzurbazar, Ron Butler, and Vance Berger.

Foundations of Econometrics

Foundations of Econometrics

  • Author: Albert Madansky
  • Publisher: Elsevier
  • ISBN: 1483275256
  • Category: Business & Economics
  • Page: 274
  • View: 6656
DOWNLOAD NOW »
Advanced Textbooks in Economics, Volume 7: Foundations of Econometrics focuses on the principles, processes, methodologies, and approaches involved in the study of econometrics. The publication examines matrix theory and multivariate statistical analysis. Discussions focus on the maximum likelihood estimation of multivariate normal distribution parameters, point estimation theory, multivariate normal distribution, multivariate probability distributions, Euclidean spaces and linear transformations, orthogonal transformations and symmetric matrices, and determinants. The manuscript then ponders on linear expected value models and simultaneous equation estimation. Topics include random exogenous variables, maximum likelihood estimation of a single equation, identification of a single equation, linear stochastic difference equations, and errors-in-variables models. The book takes a look at a prolegomenon to econometric model building, tests of hypotheses in econometric models, multivariate statistical analysis, and simultaneous equation estimation. Concerns include maximum likelihood estimation of a single equation, tests of linear hypotheses, testing for independence, and causality in economic models. The publication is a valuable source of data for economists and researchers interested in the foundations of econometrics.

Residuals and Influence in Regression

Residuals and Influence in Regression

  • Author: R. Dennis Cook,Sanford Weisberg
  • Publisher: Chapman & Hall/CRC
  • ISBN: N.A
  • Category: Mathematics
  • Page: 230
  • View: 8625
DOWNLOAD NOW »
Diagnostic methods using residuals; Assessment of influence; Alternative approaches to influence; Assessment of influence in other problems.

Generalized Additive Models

Generalized Additive Models

  • Author: T.J. Hastie
  • Publisher: Routledge
  • ISBN: 1351445960
  • Category: Mathematics
  • Page: 352
  • View: 3531
DOWNLOAD NOW »
This book describes an array of power tools for data analysis that are based on nonparametric regression and smoothing techniques. These methods relax the linear assumption of many standard models and allow analysts to uncover structure in the data that might otherwise have been missed. While McCullagh and Nelder's Generalized Linear Models shows how to extend the usual linear methodology to cover analysis of a range of data types, Generalized Additive Models enhances this methodology even further by incorporating the flexibility of nonparametric regression. Clear prose, exercises in each chapter, and case studies enhance this popular text.