Search Results for "fundamentals-of-algebraic-topology-graduate-texts-in-mathematics"

Fundamentals of Algebraic Topology

Fundamentals of Algebraic Topology

  • Author: Steven H. Weintraub
  • Publisher: Springer
  • ISBN: 1493918443
  • Category: Mathematics
  • Page: 163
  • View: 5434
DOWNLOAD NOW »
This rapid and concise presentation of the essential ideas and results of algebraic topology follows the axiomatic foundations pioneered by Eilenberg and Steenrod. The approach of the book is pragmatic: while most proofs are given, those that are particularly long or technical are omitted, and results are stated in a form that emphasizes practical use over maximal generality. Moreover, to better reveal the logical structure of the subject, the separate roles of algebra and topology are illuminated. Assuming a background in point-set topology, Fundamentals of Algebraic Topology covers the canon of a first-year graduate course in algebraic topology: the fundamental group and covering spaces, homology and cohomology, CW complexes and manifolds, and a short introduction to homotopy theory. Readers wishing to deepen their knowledge of algebraic topology beyond the fundamentals are guided by a short but carefully annotated bibliography.

An Introduction to Algebraic Topology

An Introduction to Algebraic Topology

  • Author: Joseph Rotman
  • Publisher: Springer Science & Business Media
  • ISBN: 9780387966786
  • Category: Mathematics
  • Page: 438
  • View: 3416
DOWNLOAD NOW »
A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.

A Basic Course in Algebraic Topology

A Basic Course in Algebraic Topology

  • Author: William S. Massey
  • Publisher: Springer Science & Business Media
  • ISBN: 9780387974309
  • Category: Mathematics
  • Page: 428
  • View: 5776
DOWNLOAD NOW »
This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.

Algebraic Topology

Algebraic Topology

A First Course

  • Author: William Fulton
  • Publisher: Springer Science & Business Media
  • ISBN: 1461241804
  • Category: Mathematics
  • Page: 430
  • View: 7549
DOWNLOAD NOW »
To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

Maß und Kategorie

Maß und Kategorie

  • Author: J.C. Oxtoby
  • Publisher: Springer-Verlag
  • ISBN: 364296074X
  • Category: Mathematics
  • Page: 112
  • View: 9142
DOWNLOAD NOW »
Dieses Buch behandelt hauptsächlich zwei Themenkreise: Der Bairesche Kategorie-Satz als Hilfsmittel für Existenzbeweise sowie Die "Dualität" zwischen Maß und Kategorie. Die Kategorie-Methode wird durch viele typische Anwendungen erläutert; die Analogie, die zwischen Maß und Kategorie besteht, wird nach den verschiedensten Richtungen hin genauer untersucht. Hierzu findet der Leser eine kurze Einführung in die Grundlagen der metrischen Topologie; außerdem werden grundlegende Eigenschaften des Lebesgue schen Maßes hergeleitet. Es zeigt sich, daß die Lebesguesche Integrationstheorie für unsere Zwecke nicht erforderlich ist, sondern daß das Riemannsche Integral ausreicht. Weiter werden einige Begriffe aus der allgemeinen Maßtheorie und Topologie eingeführt; dies geschieht jedoch nicht nur der größeren Allgemeinheit wegen. Es erübrigt sich fast zu erwähnen, daß sich die Bezeichnung "Kategorie" stets auf "Bairesche Kategorie" be zieht; sie hat nichts zu tun mit dem in der homologischen Algebra verwendeten Begriff der Kategorie. Beim Leser werden lediglich grundlegende Kenntnisse aus der Analysis und eine gewisse Vertrautheit mit der Mengenlehre vorausgesetzt. Für die hier untersuchten Probleme bietet sich in natürlicher Weise die mengentheoretische Formulierung an. Das vorlie gende Buch ist als Einführung in dieses Gebiet der Analysis gedacht. Man könnte es als Ergänzung zur üblichen Grundvorlesung über reelle Analysis, als Grundlage für ein Se minar oder auch zum selbständigen Studium verwenden. Bei diesem Buch handelt es sich vorwiegend um eine zusammenfassende Darstellung; jedoch finden sich in ihm auch einige Verfeinerungen bekannter Resultate, namentlich Satz 15.6 und Aussage 20.4. Das Literaturverzeichnis erhebt keinen Anspruch auf Vollständigkeit. Häufig werden Werke zitiert, die weitere Literaturangaben enthalten.

Algebraic Topology

Algebraic Topology

  • Author: C. R. F. Maunder
  • Publisher: Courier Corporation
  • ISBN: 9780486691312
  • Category: Mathematics
  • Page: 375
  • View: 5050
DOWNLOAD NOW »
Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.

Differentialgeometrie, Topologie und Physik

Differentialgeometrie, Topologie und Physik

  • Author: Mikio Nakahara
  • Publisher: Springer-Verlag
  • ISBN: 3662453002
  • Category: Science
  • Page: 597
  • View: 3561
DOWNLOAD NOW »
Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Real and Abstract Analysis

Real and Abstract Analysis

A modern treatment of the theory of functions of a real variable

  • Author: Edwin Hewitt,Karl Stromberg
  • Publisher: Springer-Verlag
  • ISBN: 3662297949
  • Category: Mathematics
  • Page: 476
  • View: 2880
DOWNLOAD NOW »

Homotopical Topology

Homotopical Topology

  • Author: Anatoly Fomenko,Dmitry Fuchs
  • Publisher: Springer
  • ISBN: 3319234889
  • Category: Mathematics
  • Page: 627
  • View: 7368
DOWNLOAD NOW »
This textbook on algebraic topology updates a popular textbook from the golden era of the Moscow school of I. M. Gelfand. The first English translation, done many decades ago, remains very much in demand, although it has been long out-of-print and is difficult to obtain. Therefore, this updated English edition will be much welcomed by the mathematical community. Distinctive features of this book include: a concise but fully rigorous presentation, supplemented by a plethora of illustrations of a high technical and artistic caliber; a huge number of nontrivial examples and computations done in detail; a deeper and broader treatment of topics in comparison to most beginning books on algebraic topology; an extensive, and very concrete, treatment of the machinery of spectral sequences. The second edition contains an entirely new chapter on K-theory and the Riemann-Roch theorem (after Hirzebruch and Grothendieck).

Algebraic Topology

Algebraic Topology

Homology and Cohomology

  • Author: Andrew H. Wallace
  • Publisher: Courier Corporation
  • ISBN: 0486462390
  • Category: Mathematics
  • Page: 272
  • View: 7875
DOWNLOAD NOW »
Surveys several algebraic invariants, including the fundamental group, singular and Cech homology groups, and a variety of cohomology groups.

Algebraic Topology

Algebraic Topology

  • Author: Tammo tom Dieck
  • Publisher: European Mathematical Society
  • ISBN: 9783037190487
  • Category: Mathematics
  • Page: 567
  • View: 3644
DOWNLOAD NOW »
This book is written as a textbook on algebraic topology. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (masters) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.

Lineare Darstellungen endlicher Gruppen

Lineare Darstellungen endlicher Gruppen

  • Author: Jean Pierre Serre
  • Publisher: Springer-Verlag
  • ISBN: 3322858634
  • Category: Mathematics
  • Page: 102
  • View: 3822
DOWNLOAD NOW »

Algebraic Topology

Algebraic Topology

  • Author: Allen Hatcher
  • Publisher: Cambridge University Press
  • ISBN: 9780521795401
  • Category: Mathematics
  • Page: 544
  • View: 8679
DOWNLOAD NOW »
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology

  • Author: J. P. May
  • Publisher: University of Chicago Press
  • ISBN: 9780226511832
  • Category: Mathematics
  • Page: 243
  • View: 2661
DOWNLOAD NOW »
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Basic Concepts of Algebraic Topology

Basic Concepts of Algebraic Topology

  • Author: F.H. Croom
  • Publisher: Springer Science & Business Media
  • ISBN: 1468494759
  • Category: Mathematics
  • Page: 180
  • View: 9705
DOWNLOAD NOW »
This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.

Lectures on Algebraic Topology

Lectures on Algebraic Topology

  • Author: Albrecht Dold
  • Publisher: Springer Science & Business Media
  • ISBN: 9783540586609
  • Category: Mathematics
  • Page: 379
  • View: 3508
DOWNLOAD NOW »
Springer is reissuing a selected few highly successful books in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. Springer-Verlag began publishing books in higher mathematics in 1920. This is a reprint of the Second Edition.

Introduction to Homotopy Theory

Introduction to Homotopy Theory

  • Author: Paul Selick
  • Publisher: American Mathematical Soc.
  • ISBN: 9780821844366
  • Category: Mathematics
  • Page: 188
  • View: 1740
DOWNLOAD NOW »
This text is based on a one-semester graduate course taught by the author at The Fields Institute in fall 1995 as part of the homotopy theory program which constituted the Institute's major program that year. The intent of the course was to bring graduate students who had completed a first course in algebraic topology to the point where they could understand research lectures in homotopy theory and to prepare them for the other, more specialized graduate courses being held in conjunction with the program. The notes are divided into two parts: prerequisites and the course proper. Part I, the prerequisites, contains a review of material often taught in a first course in algebraic topology. It should provide a useful summary for students and non-specialists who are interested in learning the basics of algebraic topology. Included are some basic category theory, point set topology, the fundamental group, homological algebra, singular and cellular homology, and Poincare duality. Part II covers fibrations and cofibrations, Hurewicz and cellular approximation theorems, topics in classical homotopy theory, simplicial sets, fiber bundles, Hopf algebras, spectral sequences, localization, generalized homology and cohomology operations. This book collects in one place the material that a researcher in algebraic topology must know. The author has attempted to make this text a self-contained exposition. Precise statements and proofs are given of ``folk'' theorems which are difficult to find or do not exist in the literature.

Homology Theory

Homology Theory

An Introduction to Algebraic Topology

  • Author: P. J. Hilton,S. Wylie
  • Publisher: CUP Archive
  • ISBN: 9780521094221
  • Category: Mathematics
  • Page: 484
  • View: 8020
DOWNLOAD NOW »
This account of algebraic topology is complete in itself, assuming no previous knowledge of the subject. It is used as a textbook for students in the final year of an undergraduate course or on graduate courses and as a handbook for mathematicians in other branches who want some knowledge of the subject.

Topology and Geometry

Topology and Geometry

  • Author: Glen E. Bredon
  • Publisher: Springer Science & Business Media
  • ISBN: 9780387979267
  • Category: Mathematics
  • Page: 557
  • View: 6223
DOWNLOAD NOW »
This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS