Search Results for "getting-started-with-r"

Getting Started with R

Getting Started with R

  • Author: Andrew P. Beckerman,Owen L. Petchey,Dylan Z. Childs
  • Publisher: Oxford University Press
  • ISBN: 0198787839
  • Category: Science
  • Page: 240
  • View: 9560
DOWNLOAD NOW »
R is rapidly becoming the standard software for statistical analyses, graphical presentation of data, and programming in the natural, physical, social, and engineering sciences. Getting Started with R is now the go-to introductory guide for biologists wanting to learn how to use R in their research. It teaches readers how to import, explore, graph, and analyse data, while keeping them focused on their ultimate goals: clearly communicating their data in oral presentations, posters, papers, and reports. It provides a consistent workflow for using R that is simple, efficient, reliable, and reproducible. This second edition has been updated and expanded while retaining the concise and engaging nature of its predecessor, offering an accessible and fun introduction to the packages dplyr and ggplot2 for data manipulation and graphing. It expands the set of basic statistics considered in the first edition to include new examples of a simple regression, a one-way and a two-way ANOVA. Finally, it introduces a new chapter on the generalised linear model. Getting Started with R is suitable for undergraduates, graduate students, professional researchers, and practitioners in the biological sciences.

Getting Started with R

Getting Started with R

An Introduction for Biologists

  • Author: Andrew P. Beckerman,Dylan Z. Childs,Owen L. Petchey
  • Publisher: Oxford University Press
  • ISBN: 0191091936
  • Category: Science
  • Page: 240
  • View: 4211
DOWNLOAD NOW »
R is rapidly becoming the standard software for statistical analyses, graphical presentation of data, and programming in the natural, physical, social, and engineering sciences. Getting Started with R is now the go-to introductory guide for biologists wanting to learn how to use R in their research. It teaches readers how to import, explore, graph, and analyse data, while keeping them focused on their ultimate goals: clearly communicating their data in oral presentations, posters, papers, and reports. It provides a consistent workflow for using R that is simple, efficient, reliable, and reproducible. This second edition has been updated and expanded while retaining the concise and engaging nature of its predecessor, offering an accessible and fun introduction to the packages dplyr and ggplot2 for data manipulation and graphing. It expands the set of basic statistics considered in the first edition to include new examples of a simple regression, a one-way and a two-way ANOVA. Finally, it introduces a new chapter on the generalised linear model. Getting Started with R is suitable for undergraduates, graduate students, professional researchers, and practitioners in the biological sciences.

Getting Started with R

Getting Started with R

An introduction for biologists

  • Author: Andrew P. Beckerman,Owen L. Petchey
  • Publisher: OUP Oxford
  • ISBN: 0191624152
  • Category: Science
  • Page: 128
  • View: 7249
DOWNLOAD NOW »
Learning how to get answers from data is an integral part of modern training in the natural, physical, social, and engineering sciences. One of the most exciting changes in data management and analysis during the last decade has been the growth of open source software. The open source statistics and programming language R has emerged as a critical component of any researcher's toolbox. Indeed, R is rapidly becoming the standard software for analyses, graphical presentations, and programming in the biological sciences. This book provides a functional introduction for biologists new to R. While teaching how to import, explore, graph, and analyse data, it keeps readers focused on their ultimate goals - communicating their data in oral presentations, posters, papers, and reports. It also provides a consistent method (workflow) for using R that is simple, efficient, reliable, accurate, and reproducible. The material in the book reproduces the engaging and sometimes humorous nature of the three-day course on which it is based.

25 Recipes for Getting Started with R

25 Recipes for Getting Started with R

  • Author: Paul Teetor
  • Publisher: "O'Reilly Media, Inc."
  • ISBN: 1449303234
  • Category: Computers
  • Page: 44
  • View: 4800
DOWNLOAD NOW »
R is a powerful tool for statistics and graphics, but getting started with this language can be frustrating. This short, concise book provides beginners with a selection of how-to recipes to solve simple problems with R. Each solution gives you just what you need to know to use R for basic statistics, graphics, and regression. You'll find recipes on reading data files, creating data frames, computing basic statistics, testing means and correlations, creating a scatter plot, performing simple linear regression, and many more. These solutions were selected from O'Reilly's R Cookbook, which contains more than 200 recipes for R that you'll find useful once you move beyond the basics.

Getting Started with RStudio

Getting Started with RStudio

  • Author: John Verzani
  • Publisher: "O'Reilly Media, Inc."
  • ISBN: 1449309038
  • Category: Computers
  • Page: 92
  • View: 844
DOWNLOAD NOW »
Annotation Dive into the RStudio Integrated Development Environment for using & programming R, the open source software for statistical computing & graphics. This text provides new & experienced users with an overview of RStudio, as well as hands-on instructions for analyzing data, generating reports & developing R software packages.

A Beginner's Guide to R

A Beginner's Guide to R

  • Author: Alain Zuur,Elena N. Ieno,Erik Meesters
  • Publisher: Springer Science & Business Media
  • ISBN: 9780387938370
  • Category: Computers
  • Page: 220
  • View: 8855
DOWNLOAD NOW »
Based on their extensive experience with teaching R and statistics to applied scientists, the authors provide a beginner's guide to R. To avoid the difficulty of teaching R and statistics at the same time, statistical methods are kept to a minimum. The text covers how to download and install R, import and manage data, elementary plotting, an introduction to functions, advanced plotting, and common beginner mistakes. This book contains everything you need to know to get started with R.

bookdown

bookdown

Authoring Books and Technical Documents with R Markdown

  • Author: Yihui Xie
  • Publisher: CRC Press
  • ISBN: 1351792601
  • Category: Mathematics
  • Page: 138
  • View: 1662
DOWNLOAD NOW »
bookdown: Authoring Books and Technical Documents with R Markdown presents a much easier way to write books and technical publications than traditional tools such as LaTeX and Word. The bookdown package inherits the simplicity of syntax and flexibility for data analysis from R Markdown, and extends R Markdown for technical writing, so that you can make better use of document elements such as figures, tables, equations, theorems, citations, and references. Similar to LaTeX, you can number and cross-reference these elements with bookdown. Your document can even include live examples so readers can interact with them while reading the book. The book can be rendered to multiple output formats, including LaTeX/PDF, HTML, EPUB, and Word, thus making it easy to put your documents online. The style and theme of these output formats can be customized. We used books and R primarily for examples in this book, but bookdown is not only for books or R. Most features introduced in this book also apply to other types of publications: journal papers, reports, dissertations, course handouts, study notes, and even novels. You do not have to use R, either. Other choices of computing languages include Python, C, C++, SQL, Bash, Stan, JavaScript, and so on, although R is best supported. You can also leave out computing, for example, to write a fiction. This book itself is an example of publishing with bookdown and R Markdown, and its source is fully available on GitHub.

Learning RStudio for R Statistical Computing

Learning RStudio for R Statistical Computing

  • Author: Mark P. J. Van der Loo
  • Publisher: Packt Publishing Ltd
  • ISBN: 1782160612
  • Category: Computers
  • Page: 126
  • View: 7344
DOWNLOAD NOW »
A practical tutorial covering how to leverage RStudio functionality to effectively perform R Development, analysis, and reporting with RStudio. The book is aimed at R developers and analysts who wish to do R statistical development while taking advantage of RStudio functionality to ease their development efforts. Familiarity with R is assumed. Those who want to get started with R development using RStudio will also find the book useful. Even if you already use R but want to create reproducible statistical analysis projects or extend R with self-written packages, this book shows how to quickly achieve this using RStudio.

Head First Data Analysis

Head First Data Analysis

A Learner's Guide to Big Numbers, Statistics, and Good Decisions

  • Author: Michael Milton
  • Publisher: "O'Reilly Media, Inc."
  • ISBN: 0596153937
  • Category: Business & Economics
  • Page: 445
  • View: 3194
DOWNLOAD NOW »
A guide for data managers and analyzers shares guidelines for identifying patterns, predicting future outcomes, and presenting findings to others; drawing on current research in cognitive science and learning theory while covering such additional topics as assessing data quality, handling ambiguous information, and organizing data within market groups. Original.

R For Dummies

R For Dummies

  • Author: Andrie de Vries,Joris Meys
  • Publisher: John Wiley & Sons
  • ISBN: 1119055830
  • Category: Computers
  • Page: 432
  • View: 8399
DOWNLOAD NOW »
Mastering R has never been easier Picking up R can be tough, even for seasoned statisticians and data analysts. R For Dummies, 2nd Edition provides a quick and painless way to master all the R you'll ever need. Requiring no prior programming experience and packed with tons of practical examples, step-by-step exercises, and sample code, this friendly and accessible guide shows you how to know your way around lists, data frames, and other R data structures, while learning to interact with other programs, such as Microsoft Excel. You'll learn how to reshape and manipulate data, merge data sets, split and combine data, perform calculations on vectors and arrays, and so much more. R is an open source statistical environment and programming language that has become very popular in varied fields for the management and analysis of data. R provides a wide array of statistical and graphical techniques, and has become the standard among statisticians for software development and data analysis. R For Dummies, 2nd Edition takes the intimidation out of working with R and arms you with the knowledge and know-how to master the programming language of choice among statisticians and data analysts worldwide. Covers downloading, installing, and configuring R Includes tips for getting data in and out of R Offers advice on fitting regression models and ANOVA Provides helpful hints for working with graphics R For Dummies, 2nd Edition is an ideal introduction to R for complete beginners, as well as an excellent technical reference for experienced R programmers.

R Programming By Example

R Programming By Example

Practical, hands-on projects to help you get started with R

  • Author: Omar Trejo Navarro
  • Publisher: Packt Publishing Ltd
  • ISBN: 1788291360
  • Category: Computers
  • Page: 470
  • View: 9402
DOWNLOAD NOW »
This step-by-step guide demonstrates how to build simple-to-advanced applications through examples in R using modern tools. About This Book Get a firm hold on the fundamentals of R through practical hands-on examples Get started with good R programming fundamentals for data science Exploit the different libraries of R to build interesting applications in R Who This Book Is For This books is for aspiring data science professionals or statisticians who would like to learn about the R programming language in a practical manner. Basic programming knowledge is assumed. What You Will Learn Discover techniques to leverage R's features, and work with packages Perform a descriptive analysis and work with statistical models using R Work efficiently with objects without using loops Create diverse visualizations to gain better understanding of the data Understand ways to produce good visualizations and create reports for the results Read and write data from relational databases and REST APIs, both packaged and unpackaged Improve performance by writing better code, delegating that code to a more efficient programming language, or making it parallel In Detail R is a high-level statistical language and is widely used among statisticians and data miners to develop analytical applications. Often, data analysis people with great analytical skills lack solid programming knowledge and are unfamiliar with the correct ways to use R. Based on the version 3.4, this book will help you develop strong fundamentals when working with R by taking you through a series of full representative examples, giving you a holistic view of R. We begin with the basic installation and configuration of the R environment. As you progress through the exercises, you'll become thoroughly acquainted with R's features and its packages. With this book, you will learn about the basic concepts of R programming, work efficiently with graphs, create publication-ready and interactive 3D graphs, and gain a better understanding of the data at hand. The detailed step-by-step instructions will enable you to get a clean set of data, produce good visualizations, and create reports for the results. It also teaches you various methods to perform code profiling and performance enhancement with good programming practices, delegation, and parallelization. By the end of this book, you will know how to efficiently work with data, create quality visualizations and reports, and develop code that is modular, expressive, and maintainable. Style and Approach This is an easy-to-understand guide filled with real-world examples, giving you a holistic view of R and practical, hands-on experience.

Learning Statistics with R

Learning Statistics with R

  • Author: Daniel Navarro
  • Publisher: Lulu.com
  • ISBN: 1326189727
  • Category:
  • Page: N.A
  • View: 7616
DOWNLOAD NOW »

Graphing Data with R

Graphing Data with R

An Introduction

  • Author: John Jay Hilfiger
  • Publisher: "O'Reilly Media, Inc."
  • ISBN: 1491922567
  • Category: Computers
  • Page: 336
  • View: 9107
DOWNLOAD NOW »
It’s much easier to grasp complex data relationships with a graph than by scanning numbers in a spreadsheet. This introductory guide shows you how to use the R language to create a variety of useful graphs for visualizing and analyzing complex data for science, business, media, and many other fields. You’ll learn methods for highlighting important relationships and trends, reducing data to simpler forms, and emphasizing key numbers at a glance. Anyone who wants to analyze data will find something useful here—even if you don’t have a background in mathematics, statistics, or computer programming. If you want to examine data related to your work, this book is the ideal way to start. Get started with R by learning basic commands Build single variable graphs, such as dot and pie charts, box plots, and histograms Explore the relationship between two quantitative variables with scatter plots, high-density plots, and other techniques Use scatterplot matrices, 3D plots, clustering, heat maps, and other graphs to visualize relationships among three or more variables

The R Book

The R Book

  • Author: Michael J. Crawley
  • Publisher: John Wiley & Sons
  • ISBN: 1118448960
  • Category: Mathematics
  • Page: 1080
  • View: 7613
DOWNLOAD NOW »
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

R for Data Science

R for Data Science

Import, Tidy, Transform, Visualize, and Model Data

  • Author: Hadley Wickham,Garrett Grolemund
  • Publisher: "O'Reilly Media, Inc."
  • ISBN: 1491910364
  • Category: Computers
  • Page: 520
  • View: 568
DOWNLOAD NOW »
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

The R Inferno

The R Inferno

  • Author: Patrick Burns
  • Publisher: Lulu.com
  • ISBN: 1471046524
  • Category:
  • Page: N.A
  • View: 3060
DOWNLOAD NOW »

Reproducible Research with R and R Studio, Second Edition

Reproducible Research with R and R Studio, Second Edition

  • Author: Christopher Gandrud
  • Publisher: CRC Press
  • ISBN: 1498715389
  • Category: Business & Economics
  • Page: 323
  • View: 4789
DOWNLOAD NOW »
All the Tools for Gathering and Analyzing Data and Presenting Results Reproducible Research with R and RStudio, Second Edition brings together the skills and tools needed for doing and presenting computational research. Using straightforward examples, the book takes you through an entire reproducible research workflow. This practical workflow enables you to gather and analyze data as well as dynamically present results in print and on the web. New to the Second Edition The rmarkdown package that allows you to create reproducible research documents in PDF, HTML, and Microsoft Word formats using the simple and intuitive Markdown syntax Improvements to RStudio’s interface and capabilities, such as its new tools for handling R Markdown documents Expanded knitr R code chunk capabilities The kable function in the knitr package and the texreg package for dynamically creating tables to present your data and statistical results An improved discussion of file organization, enabling you to take full advantage of relative file paths so that your documents are more easily reproducible across computers and systems The dplyr, magrittr, and tidyr packages for fast data manipulation Numerous modifications to R syntax in user-created packages Changes to GitHub’s and Dropbox’s interfaces Create Dynamic and Highly Reproducible Research This updated book provides all the tools to combine your research with the presentation of your findings. It saves you time searching for information so that you can spend more time actually addressing your research questions. Supplementary files used for the examples and a reproducible research project are available on the author’s website.

The Art of R Programming

The Art of R Programming

A Tour of Statistical Software Design

  • Author: Norman Matloff
  • Publisher: No Starch Press
  • ISBN: 1593273843
  • Category: Computers
  • Page: 400
  • View: 4515
DOWNLOAD NOW »
A guide to software development using the R programming language covers such topics as closures, recursion, anonymous functions, and debugging techniques.

Beginning R

Beginning R

The Statistical Programming Language

  • Author: Mark Gardener
  • Publisher: John Wiley & Sons
  • ISBN: 1118239377
  • Category: Computers
  • Page: 504
  • View: 5664
DOWNLOAD NOW »
Conquer the complexities of this open source statistical language R is fast becoming the de facto standard for statistical computing and analysis in science, business, engineering, and related fields. This book examines this complex language using simple statistical examples, showing how R operates in a user-friendly context. Both students and workers in fields that require extensive statistical analysis will find this book helpful as they learn to use R for simple summary statistics, hypothesis testing, creating graphs, regression, and much more. It covers formula notation, complex statistics, manipulating data and extracting components, and rudimentary programming. R, the open source statistical language increasingly used to handle statistics and produces publication-quality graphs, is notoriously complex This book makes R easier to understand through the use of simple statistical examples, teaching the necessary elements in the context in which R is actually used Covers getting started with R and using it for simple summary statistics, hypothesis testing, and graphs Shows how to use R for formula notation, complex statistics, manipulating data, extracting components, and regression Provides beginning programming instruction for those who want to write their own scripts Beginning R offers anyone who needs to perform statistical analysis the information necessary to use R with confidence.

R Cookbook

R Cookbook

Proven Recipes for Data Analysis, Statistics, and Graphics

  • Author: Paul Teetor
  • Publisher: "O'Reilly Media, Inc."
  • ISBN: 1449307264
  • Category: Computers
  • Page: 438
  • View: 3507
DOWNLOAD NOW »
With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author