Search Results for "heterogeneous-computing-with-opencl-2-0"

Heterogeneous Computing with OpenCL 2.0

Heterogeneous Computing with OpenCL 2.0

  • Author: David R. Kaeli,Perhaad Mistry,Dana Schaa,Dong Ping Zhang
  • Publisher: Morgan Kaufmann
  • ISBN: 0128016493
  • Category: Computers
  • Page: 330
  • View: 1742
DOWNLOAD NOW »
Heterogeneous Computing with OpenCL 2.0 teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs). This fully-revised edition includes the latest enhancements in OpenCL 2.0 including: • Shared virtual memory to increase programming flexibility and reduce data transfers that consume resources • Dynamic parallelism which reduces processor load and avoids bottlenecks • Improved imaging support and integration with OpenGL Designed to work on multiple platforms, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, this book explores memory spaces, optimization techniques, extensions, debugging and profiling. Multiple case studies and examples illustrate high-performance algorithms, distributing work across heterogeneous systems, embedded domain-specific languages, and will give you hands-on OpenCL experience to address a range of fundamental parallel algorithms. Updated content to cover the latest developments in OpenCL 2.0, including improvements in memory handling, parallelism, and imaging support Explanations of principles and strategies to learn parallel programming with OpenCL, from understanding the abstraction models to thoroughly testing and debugging complete applications Example code covering image analytics, web plugins, particle simulations, video editing, performance optimization, and more

Heterogeneous Computing with OpenCL

Heterogeneous Computing with OpenCL

  • Author: Benedict Gaster,Lee Howes,David R.. Kaeli
  • Publisher: Elsevier
  • ISBN: 0123877660
  • Category: Computers
  • Page: 277
  • View: 7443
DOWNLOAD NOW »
"Heterogeneous Computing with OpenCL teaches OpenCL and parallel programming for complex systems that may include different types of hardware: Central Processing Units (CPUs), Digital Signal Processors (DSPs), Graphic Processing Units (GPUs) and Accelerated Processing Units (APUs). Designed to work on multiple platforms and with wide industry support, OpenCL will help you more effectively program for a heterogeneous future.

Using OpenCL

Using OpenCL

Programming Massively Parallel Computers

  • Author: J. Kowalik,T. Puźniakowski
  • Publisher: IOS Press
  • ISBN: 1614990301
  • Category: Computers
  • Page: 312
  • View: 9649
DOWNLOAD NOW »
In 2011 many computer users were exploring the opportunities and the benefits of the massive parallelism offered by heterogeneous computing. In 2000 the Khronos Group, a not-for-profit industry consortium, was founded to create standard open APIs for parallel computing, graphics and dynamic media. Among them has been OpenCL, an open system for programming heterogeneous computers with components made by multiple manufacturers. This publication explains how heterogeneous computers work and how to program them using OpenCL. It also describes how to combine OpenCL with OpenGL for displaying graphical effects in real time. Chapter 1 describes briefly two older de facto standard and highly successful parallel programming systems: MPI and OpenMP. Collectively, the MPI, OpenMP, and OpenCL systems cover programming of all major parallel architectures: clusters, shared-memory computers, and the newest heterogeneous computers. Chapter 2, the technical core of the book, deals with OpenCL fundamentals: programming, hardware, and the interaction between them. Chapter 3 adds important information about such advanced issues as double-versus-single arithmetic precision, efficiency, memory use, and debugging. Chapters 2 and 3 contain several examples of code and one case study on genetic algorithms. These examples are related to linear algebra operations, which are very common in scientific, industrial, and business applications. Most of the book’s examples can be found on the enclosed CD, which also contains basic projects for Visual Studio, MinGW, and GCC. This supplementary material will assist the reader in getting a quick start on OpenCL projects.

OpenCL Programming Guide

OpenCL Programming Guide

  • Author: Aaftab Munshi,Benedict Gaster,Timothy G. Mattson,Dan Ginsburg
  • Publisher: Pearson Education
  • ISBN: 9780132594554
  • Category: Computers
  • Page: 648
  • View: 9610
DOWNLOAD NOW »
Using the new OpenCL (Open Computing Language) standard, you can write applications that access all available programming resources: CPUs, GPUs, and other processors such as DSPs and the Cell/B.E. processor. Already implemented by Apple, AMD, Intel, IBM, NVIDIA, and other leaders, OpenCL has outstanding potential for PCs, servers, handheld/embedded devices, high performance computing, and even cloud systems. This is the first comprehensive, authoritative, and practical guide to OpenCL 1.1 specifically for working developers and software architects. Written by five leading OpenCL authorities, OpenCL Programming Guide covers the entire specification. It reviews key use cases, shows how OpenCL can express a wide range of parallel algorithms, and offers complete reference material on both the API and OpenCL C programming language. Through complete case studies and downloadable code examples, the authors show how to write complex parallel programs that decompose workloads across many different devices. They also present all the essentials of OpenCL software performance optimization, including probing and adapting to hardware. Coverage includes Understanding OpenCL’s architecture, concepts, terminology, goals, and rationale Programming with OpenCL C and the runtime API Using buffers, sub-buffers, images, samplers, and events Sharing and synchronizing data with OpenGL and Microsoft’s Direct3D Simplifying development with the C++ Wrapper API Using OpenCL Embedded Profiles to support devices ranging from cellphones to supercomputer nodes Case studies dealing with physics simulation; image and signal processing, such as image histograms, edge detection filters, Fast Fourier Transforms, and optical flow; math libraries, such as matrix multiplication and high-performance sparse matrix multiplication; and more Source code for this book is available at https://code.google.com/p/opencl-book-samples/

Digital Information Processing and Communications, Part II

Digital Information Processing and Communications, Part II

International Conference, ICDIPC 2011, Ostrava, Czech Republic, July 7-9, 2011, Proceedings

  • Author: Vaclav Snasael,Jan Platos,Eyas El-Qawasmeh
  • Publisher: Springer
  • ISBN: 3642224105
  • Category: Computers
  • Page: 549
  • View: 2455
DOWNLOAD NOW »
This two-volume-set (CCIS 188 and CCIS 189) constitutes the refereed proceedings of the International Conference on Digital Information Processing and Communications, ICDIPC 2011, held in Ostrava, Czech Republic, in July 2011. The 91 revised full papers of both volumes presented together with 4 invited talks were carefully reviewed and selected from 235 submissions. The papers are organized in topical sections on network security; Web applications; data mining; neural networks; distributed and parallel processing; biometrics technologies; e-learning; information ethics; image processing; information and data management; software engineering; data compression; networks; computer security; hardware and systems; multimedia; ad hoc network; artificial intelligence; signal processing; cloud computing; forensics; security; software and systems; mobile networking; and some miscellaneous topics in digital information and communications.

Design of FPGA-Based Computing Systems with OpenCL

Design of FPGA-Based Computing Systems with OpenCL

  • Author: Hasitha Muthumala Waidyasooriya,Masanori Hariyama,Kunio Uchiyama
  • Publisher: Springer
  • ISBN: 3319681613
  • Category: Technology & Engineering
  • Page: 126
  • View: 6588
DOWNLOAD NOW »
This book provides wide knowledge about designing FPGA-based heterogeneous computing systems, using a high-level design environment based on OpenCL (Open Computing language), which is called OpenCL for FPGA. The OpenCL-based design methodology will be the key technology to exploit the potential of FPGAs in various applications such as low-power embedded applications and high-performance computing. By understanding the OpenCL-based design methodology, readers can design an entire FPGA-based computing system more easily compared to the conventional HDL-based design, because OpenCL for FPGA takes care of computation on a host, data transfer between a host and an FPGA, computation on an FPGA with a capable of accessing external DDR memories. In the step-by-step way, readers can understand followings: how to set up the design environment how to write better codes systematically considering architectural constraints how to design practical applications

CUDA by Example

CUDA by Example

An Introduction to General-purpose GPU Programming

  • Author: Jason Sanders,Edward Kandrot
  • Publisher: Addison-Wesley Professional
  • ISBN: 9780131387683
  • Category: Computers
  • Page: 290
  • View: 3744
DOWNLOAD NOW »
The complete guide to developing high-performance applications with CUDA - written by CUDA development team members, and supported by NVIDIA * *Breakthrough techniques for using the power of graphics processors to create highperformance general purpose applications. *Packed with realistic, C-based examples -- from basic to advanced. *Covers one of today's most highly-anticipated new technologies for software development wherever performance is crucial: finance, design automation, science, simulation, graphics, and beyond. NVIDIA graphics processors have immense computational power. With NVIDIA's breakthrough CUDA software platform, that power can be put to work in virtually any type of software development that requires exceptionally high performance, from finance to physics. Now, for the first time, two of NVIDIA's senior CUDA developers thoroughly introduce the platform, and show developers exactly how to make the most of it. CUDA C by Example is the first book on CUDA development for professional programmers - and the only book created with NVIDIA's direct involvement. Concise and practical, it focuses on presenting proven techniques and concrete example code for building high-performance parallelized CUDA programs with C. Programmers familiar with C will need no other skills or experience to get started - making high-performance programming more accessible than it's ever been before.

High-Performance Computing Using FPGAs

High-Performance Computing Using FPGAs

  • Author: Wim Vanderbauwhede,Khaled Benkrid
  • Publisher: Springer Science & Business Media
  • ISBN: 1461417910
  • Category: Technology & Engineering
  • Page: 803
  • View: 6034
DOWNLOAD NOW »
High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC’s Novo-G and EPCC’s Maxwell systems; tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer; reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL’s CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C++); Graphical tools (MATLAB-Simulink, NI LabVIEW); Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft’s Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology; Financial Computing; Stencil computations; Information retrieval; Lattice QCD; Astrophysics simulations; Weather and climate modeling.