Search Results for "interaction-effects-in-linear-and-generalized-linear-models"

Interaction Effects in Linear and Generalized Linear Models

Interaction Effects in Linear and Generalized Linear Models

Examples and Applications Using Stata

  • Author: Robert L. Kaufman
  • Publisher: SAGE Publications
  • ISBN: 1506365361
  • Category: Social Science
  • Page: 608
  • View: 1828
DOWNLOAD NOW »
Offering a clear set of workable examples with data and explanations, Interaction Effects in Linear and Generalized Linear Models is a comprehensive and accessible text that provides a unified approach to interpreting interaction effects. The book develops the statistical basis for the general principles of interpretive tools and applies them to a variety of examples, introduces the ICALC Toolkit for Stata (downloadable from the Robert L. Kaufman’s website), and offers a series of start-to-finish application examples to show students how to interpret interaction effects for a variety of different techniques of analysis, beginning with OLS regression. The data sets and the Stata code to reproduce the results of the application examples are available online.

Applied Regression Analysis and Generalized Linear Models

Applied Regression Analysis and Generalized Linear Models

  • Author: John Fox
  • Publisher: SAGE Publications
  • ISBN: 1483321312
  • Category: Social Science
  • Page: 816
  • View: 6910
DOWNLOAD NOW »
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book.

Fitting Linear Models

Fitting Linear Models

An Application of Conjugate Gradient Algorithms

  • Author: A. McIntosh
  • Publisher: Springer Science & Business Media
  • ISBN: 1461257522
  • Category: Mathematics
  • Page: 200
  • View: 6987
DOWNLOAD NOW »
The increasing power and decreasing price of smalI computers, especialIy "personal" computers, has made them increasingly popular in statistical analysis. The day may not be too far off when every statistician has on his or her desktop computing power on a par with the large mainframe computers of 15 or 20 years ago. These same factors make it relatively easy to acquire and manipulate large quantities of data, and statisticians can expect a corresponding increase in the size of the datasets that they must analyze. Unfortunately, because of constraints imposed by architecture, size or price, these smalI computers do not possess the main memory of their large cousins. Thus, there is a growing need for algorithms that are sufficiently economical of space to permit statistical analysis on smalI computers. One area of analysis where there is a need for algorithms that are economical of space is in the fitting of linear models.

Multivariate General Linear Models

Multivariate General Linear Models

  • Author: Richard F. Haase
  • Publisher: SAGE Publications
  • ISBN: 1483342115
  • Category: Mathematics
  • Page: 224
  • View: 2401
DOWNLOAD NOW »
Multivariate General Linear Models is an integrated introduction to multivariate multiple regression analysis (MMR) and multivariate analysis of variance (MANOVA). Beginning with an overview of the univariate general linear model, this volume defines the key steps in analyzing linear model data, and introduces multivariate linear model analysis as a generalization of the univariate model. The author focuses on multivariate measures of association for four common multivariate test statistics, presents a flexible method for testing hypotheses on models, and emphasizes the multivariate procedures attributable to Wilks, Pillai, Hotelling, and Roy. The volume concludes with a discussion of canonical correlation analysis that is shown to subsume all the multivariate procedures discussed in previous chapters. The analyses are illustrated throughout the text with three running examples drawing from several disciples, including personnel psychology, anthropology, environmental epidemiology, and neuropsychology.

The SAGE Handbook of Regression Analysis and Causal Inference

The SAGE Handbook of Regression Analysis and Causal Inference

  • Author: Henning Best,Christof Wolf
  • Publisher: SAGE
  • ISBN: 1473908353
  • Category: Social Science
  • Page: 424
  • View: 8288
DOWNLOAD NOW »
'The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.' - John Fox, Professor, Department of Sociology, McMaster University 'The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.' - Ben Jann, Executive Director, Institute of Sociology, University of Bern 'Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.' -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.

Interaction Effects in Multiple Regression

Interaction Effects in Multiple Regression

  • Author: James Jaccard,Robert Turrisi
  • Publisher: SAGE Publications
  • ISBN: 1544332572
  • Category: Social Science
  • Page: 104
  • View: 2154
DOWNLOAD NOW »
Interaction Effects in Multiple Regression has provided students and researchers with a readable and practical introduction to conducting analyses of interaction effects in the context of multiple regression. The new addition will expand the coverage on the analysis of three way interactions in multiple regression analysis. Learn more about "The Little Green Book" - QASS Series! Click Here

The Association Graph and the Multigraph for Loglinear Models

The Association Graph and the Multigraph for Loglinear Models

  • Author: Harry J. Khamis
  • Publisher: SAGE
  • ISBN: 1452238952
  • Category: Mathematics
  • Page: 136
  • View: 5366
DOWNLOAD NOW »
The Association Graph and the Multigraph for Loglinear Models will help students, particularly those studying the analysis of categorical data, to develop the ability to evaluate and unravel even the most complex loglinear models without heavy calculations or statistical software. This supplemental text reviews loglinear models, explains the association graph, and introduces the multigraph to students who may have little prior experience of graphical techniques, but have some familiarity with categorical variable modeling. The author presents logical step-by-step techniques from the point of view of the practitioner, focusing on how the technique is applied to contingency table data and how the results are interpreted.

Generalized Linear Models for Insurance Data

Generalized Linear Models for Insurance Data

  • Author: Piet de Jong,Gillian Z. Heller
  • Publisher: Cambridge University Press
  • ISBN: 1139470477
  • Category: Business & Economics
  • Page: N.A
  • View: 556
DOWNLOAD NOW »
This is the only book actuaries need to understand generalized linear models (GLMs) for insurance applications. GLMs are used in the insurance industry to support critical decisions. Until now, no text has introduced GLMs in this context or addressed the problems specific to insurance data. Using insurance data sets, this practical, rigorous book treats GLMs, covers all standard exponential family distributions, extends the methodology to correlated data structures, and discusses recent developments which go beyond the GLM. The issues in the book are specific to insurance data, such as model selection in the presence of large data sets and the handling of varying exposure times. Exercises and data-based practicals help readers to consolidate their skills, with solutions and data sets given on the companion website. Although the book is package-independent, SAS code and output examples feature in an appendix and on the website. In addition, R code and output for all the examples are provided on the website.

JMP 13 Fitting Linear Models, Second Edition

JMP 13 Fitting Linear Models, Second Edition

  • Author: SAS
  • Publisher: SAS Institute
  • ISBN: 1629609528
  • Category: Computers
  • Page: 528
  • View: 6368
DOWNLOAD NOW »
JMP 13 Fitting Linear Models focuses on the Fit Model platform and many of its personalities. Linear and logistic regression, analysis of variance and covariance, and stepwise procedures are covered. Also included are multivariate analysis of variance, mixed models, generalized models, and models based on penalized regression techniques.

Linear Models in Statistics

Linear Models in Statistics

  • Author: Alvin C. Rencher,G. Bruce Schaalje
  • Publisher: John Wiley & Sons
  • ISBN: 0470192607
  • Category: Mathematics
  • Page: 688
  • View: 937
DOWNLOAD NOW »
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Generalized Linear Models

Generalized Linear Models

with Applications in Engineering and the Sciences

  • Author: Raymond H. Myers,Douglas C. Montgomery,G. Geoffrey Vining,Timothy J. Robinson
  • Publisher: John Wiley & Sons
  • ISBN: 0470556978
  • Category: Mathematics
  • Page: 544
  • View: 1258
DOWNLOAD NOW »
Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.

Generalized Linear Mixed Models

Generalized Linear Mixed Models

Modern Concepts, Methods and Applications

  • Author: Walter W. Stroup
  • Publisher: CRC Press
  • ISBN: 1439815135
  • Category: Mathematics
  • Page: 555
  • View: 8067
DOWNLOAD NOW »
Generalized Linear Mixed Models: Modern Concepts, Methods and Applications presents an introduction to linear modeling using the generalized linear mixed model (GLMM) as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider. Along with describing common applications of GLMMs, the text introduces the essential theory and main methodology associated with linear models that accommodate random model effects and non-Gaussian data. Unlike traditional linear model textbooks that focus on normally distributed data, this one adopts a generalized mixed model approach throughout: data for linear modeling need not be normally distributed and effects may be fixed or random. With numerous examples using SAS® PROC GLIMMIX, this book is ideal for graduate students in statistics, statistics professionals seeking to update their knowledge, and researchers new to the generalized linear model thought process. It focuses on data-driven processes and provides context for extending traditional linear model thinking to generalized linear mixed modeling. See Professor Stroup discuss the book.

Interaction Effects in Multiple Regression

Interaction Effects in Multiple Regression

  • Author: James Jaccard,Jim Jaccard,Robert Turrisi
  • Publisher: SAGE
  • ISBN: 9780761927426
  • Category: Mathematics
  • Page: 92
  • View: 3855
DOWNLOAD NOW »
This is a practical introduction to conducting analyses of interaction effects in the context of multiple regression. This new edition expands coverage on the analysis of three-way interactions in multiple regression analysis.

Regression Analysis and Linear Models

Regression Analysis and Linear Models

Concepts, Applications, and Implementation

  • Author: Richard B. Darlington,Andrew F. Hayes
  • Publisher: Guilford Publications
  • ISBN: 1462527981
  • Category: Social Science
  • Page: 661
  • View: 9934
DOWNLOAD NOW »
Ephasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.

Interaction Effects in Factorial Analysis of Variance

Interaction Effects in Factorial Analysis of Variance

  • Author: James Jaccard
  • Publisher: SAGE
  • ISBN: 9780761912217
  • Category: Mathematics
  • Page: 103
  • View: 5079
DOWNLOAD NOW »
Although factorial analysis is widely used in the social sciences, there is some confusion as to how to use the technique's most powerful feature - the evaluation of interaction effects. Written to remedy this situation, this book explores the issues underlying the effective analysis of interaction in factorial designs. It includes discussion of: different ways of characterizing interactions in ANOVA; interaction effects using traditional hypothesis testing approaches; and alternative analytic frameworks that focus on effect size methodology and interval estimation.

Foundations of Linear and Generalized Linear Models

Foundations of Linear and Generalized Linear Models

  • Author: Alan Agresti
  • Publisher: John Wiley & Sons
  • ISBN: 1118730305
  • Category: Mathematics
  • Page: 472
  • View: 1720
DOWNLOAD NOW »
A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.

Quantile Regression

Quantile Regression

  • Author: Lingxin Hao,Daniel Q. Naiman
  • Publisher: SAGE Publications
  • ISBN: 1483316904
  • Category: Social Science
  • Page: 136
  • View: 9096
DOWNLOAD NOW »
Quantile Regression, the first book of Hao and Naiman's two-book series, establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literature exists for each subject, the authors seek to explore the natural connections between this increasingly sought-after tool and research topics in the social sciences. Quantile regression as a method does not rely on assumptions as restrictive as those for the classical linear regression; though more traditional models such as least squares linear regression are more widely utilized, Hao and Naiman show, in their application of quantile regression to empirical research, how this model yields a more complete understanding of inequality. Inequality is a perennial concern in the social sciences, and recently there has been much research in health inequality as well. Major software packages have also gradually implemented quantile regression. Quantile Regression will be of interest not only to the traditional social science market but other markets such as the health and public health related disciplines. Key Features: Establishes a natural link between quantile regression and inequality studies in the social sciences Contains clearly defined terms, simplified empirical equations, illustrative graphs, empirical tables and graphs from examples Includes computational codes using statistical software popular among social scientists Oriented to empirical research

Multiple Comparison Procedures

Multiple Comparison Procedures

  • Author: Larry E. Toothaker
  • Publisher: SAGE
  • ISBN: 9780803941779
  • Category: Mathematics
  • Page: 96
  • View: 2843
DOWNLOAD NOW »
In this volume, Larry Toothaker provides the procedures that will enable researchers to establish the significance of differences between two comparable groups. Issues addressed include: planned versus post-hoc comparisons; step-by-step versus simultaneous test procedures; types of error rate; unequal sample sizes and variances; and interaction tests versus cell mean tests. Examples are used to illustrate major concepts.

Generalized Linear Models

Generalized Linear Models

A Unified Approach

  • Author: Jeff Gill
  • Publisher: SAGE Publications
  • ISBN: 1506320244
  • Category: Social Science
  • Page: 112
  • View: 7371
DOWNLOAD NOW »
The author explains the theoretical underpinnings of generalized linear models so that researchers can decide how to select the best way to adapt their data for this type of analysis. Examples are provided to illustrate the application of GLM to actual data and the author includes his Web address where additional resources can be found.

Generalized Linear Models and Extensions, Second Edition

Generalized Linear Models and Extensions, Second Edition

  • Author: James William Hardin,Joseph M. Hilbe,Joseph Hilbe
  • Publisher: Stata Press
  • ISBN: 1597180149
  • Category: Computers
  • Page: 387
  • View: 4124
DOWNLOAD NOW »
Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.