# Search Results for "introduction-to-mathematical-logic-sixth-edition-discrete-mathematics-and-its-applications"

## Introduction to Mathematical Logic, Fourth Edition

**Author**: Elliott Mendelson**Publisher:**CRC Press**ISBN:**9780412808302**Category:**Mathematics**Page:**440**View:**9224

The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic. This edition includes an extensive appendix on second-order logic, a section on set theory with urlements, and a section on the logic that results when we allow models with empty domains. The text contains numerous exercises and an appendix furnishes answers to many of them. Introduction to Mathematical Logic includes: propositional logic first-order logic first-order number theory and the incompleteness and undecidability theorems of Gödel, Rosser, Church, and Tarski axiomatic set theory theory of computability The study of mathematical logic, axiomatic set theory, and computability theory provides an understanding of the fundamental assumptions and proof techniques that form basis of mathematics. Logic and computability theory have also become indispensable tools in theoretical computer science, including artificial intelligence. Introduction to Mathematical Logic covers these topics in a clear, reader-friendly style that will be valued by anyone working in computer science as well as lecturers and researchers in mathematics, philosophy, and related fields.

## Discrete Mathematics and Its Applications

**Author**: Kenneth Rosen**Publisher:**McGraw-Hill Higher Education**ISBN:**007741893X**Category:**Education**Page:**N.A**View:**4911

## Discrete Mathematics with Applications

**Author**: Susanna S. Epp**Publisher:**Cengage Learning**ISBN:**0495391328**Category:**Mathematics**Page:**984**View:**9986

Susanna Epp's DISCRETE MATHEMATICS WITH APPLICATIONS, FOURTH EDITION provides a clear introduction to discrete mathematics. Renowned for her lucid, accessible prose, Epp explains complex, abstract concepts with clarity and precision. This book presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography, and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to the science and technology of the computer age. Overall, Epp's emphasis on reasoning provides students with a strong foundation for computer science and upper-level mathematics courses. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

## Guide to Discrete Mathematics

*An Accessible Introduction to the History, Theory, Logic and Applications*

**Author**: Gerard O'Regan**Publisher:**Springer**ISBN:**3319445618**Category:**Computers**Page:**370**View:**8164

This stimulating textbook presents a broad and accessible guide to the fundamentals of discrete mathematics, highlighting how the techniques may be applied to various exciting areas in computing. The text is designed to motivate and inspire the reader, encouraging further study in this important skill. Features: provides an introduction to the building blocks of discrete mathematics, including sets, relations and functions; describes the basics of number theory, the techniques of induction and recursion, and the applications of mathematical sequences, series, permutations, and combinations; presents the essentials of algebra; explains the fundamentals of automata theory, matrices, graph theory, cryptography, coding theory, language theory, and the concepts of computability and decidability; reviews the history of logic, discussing propositional and predicate logic, as well as advanced topics; examines the field of software engineering, describing formal methods; investigates probability and statistics.

## An Introduction to Mathematical Logic

**Author**: Richard E. Hodel**Publisher:**Courier Corporation**ISBN:**0486497852**Category:**Mathematics**Page:**491**View:**445

This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.

## Logic and Discrete Mathematics

*A Concise Introduction, Solutions Manual*

**Author**: Willem Conradie,Valentin Goranko,Claudette Robinson**Publisher:**John Wiley & Sons**ISBN:**1119000106**Category:**Mathematics**Page:**200**View:**4211

Solutions manual to accompany Logic and Discrete Mathematics: A Concise Introduction This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. Written in a clear and reader-friendly style, each section ends with an extensive set of exercises, most of them provided with complete solutions which are available in this accompanying solutions manual.

## Discrete Mathematics

*Proofs, Structures and Applications, Third Edition*

**Author**: Rowan Garnier,John Taylor**Publisher:**Taylor & Francis**ISBN:**1439812810**Category:**Mathematics**Page:**843**View:**4038

Taking an approach to the subject that is suitable for a broad readership, Discrete Mathematics: Proofs, Structures, and Applications, Third Edition provides a rigorous yet accessible exposition of discrete mathematics, including the core mathematical foundation of computer science. The approach is comprehensive yet maintains an easy-to-follow progression from the basic mathematical ideas to the more sophisticated concepts examined later in the book. This edition preserves the philosophy of its predecessors while updating and revising some of the content. New to the Third Edition In the expanded first chapter, the text includes a new section on the formal proof of the validity of arguments in propositional logic before moving on to predicate logic. This edition also contains a new chapter on elementary number theory and congruences. This chapter explores groups that arise in modular arithmetic and RSA encryption, a widely used public key encryption scheme that enables practical and secure means of encrypting data. This third edition also offers a detailed solutions manual for qualifying instructors. Exploring the relationship between mathematics and computer science, this text continues to provide a secure grounding in the theory of discrete mathematics and to augment the theoretical foundation with salient applications. It is designed to help readers develop the rigorous logical thinking required to adapt to the demands of the ever-evolving discipline of computer science.

## Discrete Mathematics with Ducks

**Author**: sarah-marie belcastro**Publisher:**CRC Press**ISBN:**1466504994**Category:**Computers**Page:**580**View:**1047

Containing exercises and materials that engage students at all levels, Discrete Mathematics with Ducks presents a gentle introduction for students who find the proofs and abstractions of mathematics challenging. This classroom-tested text uses discrete mathematics as the context for introducing proofwriting. Facilitating effective and active learning, each chapter contains a mixture of discovery activities, expository text, in-class exercises, and homework problems. Elementary exercises at the end of each expository section prompt students to review the material Try This! sections encourage students to construct fundamental components of the concepts, theorems, and proofs discussed. Sets of discovery problems and illustrative examples reinforce learning. Bonus sections can be used for take-home exams, projects, or further study Instructor Notes sections offer suggestions on how to use the material in each chapter Discrete Mathematics with Ducks offers students a diverse introduction to the field and a solid foundation for further study in discrete mathematics and complies with SIGCSE guidelines. The book shows how combinatorics and graph theory are used in both computer science and mathematics.

## Combinatory Logic

*Pure, Applied and Typed*

**Author**: Katalin Bimbó**Publisher:**CRC Press**ISBN:**1439800006**Category:**Computers**Page:**357**View:**727

Combinatory logic is one of the most versatile areas within logic that is tied to parts of philosophical, mathematical, and computational logic. Functioning as a comprehensive source for current developments of combinatory logic, this book is the only one of its kind to cover results of the last four decades. Using a reader-friendly style, the author presents the most up-to-date research studies. She includes an introduction to combinatory logic before progressing to its central theorems and proofs. The text makes intelligent and well-researched connections between combinatory logic and lambda calculi and presents models and applications to illustrate these connections.

## Introductory Discrete Mathematics

**Author**: V. K . Balakrishnan**Publisher:**Courier Corporation**ISBN:**0486140385**Category:**Mathematics**Page:**256**View:**4693

This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. More than 200 exercises, many with complete solutions. 1991 edition.

## Discrete Mathematics

**Author**: Martin Aigner**Publisher:**American Mathematical Soc.**ISBN:**9780821886151**Category:**Mathematics**Page:**388**View:**781

The advent of fast computers and the search for efficient algorithms revolutionized combinatorics and brought about the field of discrete mathematics. This book is an introduction to the main ideas and results of discrete mathematics, and with its emphasis on algorithms it should be interesting to mathematicians and computer scientists alike. The book is organized into three parts: enumeration, graphs and algorithms, and algebraic systems. There are 600 exercises with hints andsolutions to about half of them. The only prerequisites for understanding everything in the book are linear algebra and calculus at the undergraduate level. Praise for the German edition ... This book is a well-written introduction to discrete mathematics and is highly recommended to every student ofmathematics and computer science as well as to teachers of these topics. --Konrad Engel for MathSciNet Martin Aigner is a professor of mathematics at the Free University of Berlin. He received his PhD at the University of Vienna and has held a number of positions in the USA and Germany before moving to Berlin. He is the author of several books on discrete mathematics, graph theory, and the theory of search. The Monthly article Turan's graph theorem earned him a 1995 Lester R. Ford Prize of theMAA for expository writing, and his book Proofs from the BOOK with Gunter M. Ziegler has been an international success with translations into 12 languages.

## Discrete Structures, Logic, and Computability

**Author**: James L. Hein**Publisher:**Jones & Bartlett Publishers**ISBN:**1284070409**Category:**Computers**Page:**1050**View:**1922

Following the recent updates to the 2013 ACM/IEEE Computer Science curricula, Discrete Structures, Logic, and Computability, Fourth Edition, has been designed for the discrete math course that covers one to two semesters. Dr. Hein presents material in a spiral medthod of learning, introducing basic information about a topic, allowing the students to work on the problem and revisit the topic, as new information and skills are established. Written for prospective computer scientist, computer engineers, or applied mathematicians, who want to learn about the ideas that inspire computer science, this edition contains an extensive coverage of logic, setting it apart from similar books available in the field of Computer Science.

## Discrete Mathematics with Applications

**Author**: Thomas Koshy**Publisher:**Elsevier**ISBN:**9780080477343**Category:**Mathematics**Page:**1042**View:**6799

This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation. * Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations * Weaves numerous applications into the text * Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects * Includes chapter summaries of important vocabulary, formulas, and properties, plus the chapter review exercises * Features interesting anecdotes and biographies of 60 mathematicians and computer scientists * Instructor's Manual available for adopters * Student Solutions Manual available separately for purchase (ISBN: 0124211828)

## Essentials of Discrete Mathematics

**Author**: David J. Hunter**Publisher:**Jones & Bartlett Publishers**ISBN:**1284056244**Category:**Computers**Page:**548**View:**8777

Written for the one-term course, the Third Edition of Essentials of Discrete Mathematics is designed to serve computer science majors as well as students from a wide range of disciplines. The material is organized around five types of thinking: logical, relational, recursive, quantitative, and analytical. This presentation results in a coherent outline that steadily builds upon mathematical sophistication. Graphs are introduced early and referred to throughout the text, providing a richer context for examples and applications. tudents will encounter algorithms near the end of the text, after they have acquired the skills and experience needed to analyze them. The final chapter contains in-depth case studies from a variety of fields, including biology, sociology, linguistics, economics, and music.

## Basic Discrete Mathematics

*Logic, Set Theory, and Probability*

**Author**: Richard Kohar**Publisher:**World Scientific Publishing Company**ISBN:**9814730416**Category:**Mathematics**Page:**732**View:**9793

This lively introductory text exposes the student in the humanities to the world of discrete mathematics. A problem-solving based approach grounded in the ideas of George Pólya are at the heart of this book. Students learn to handle and solve new problems on their own. A straightforward, clear writing style and well-crafted examples with diagrams invite the students to develop into precise and critical thinkers. Particular attention has been given to the material that some students find challenging, such as proofs. This book illustrates how to spot invalid arguments, to enumerate possibilities, and to construct probabilities. It also presents case studies to students about the possible detrimental effects of ignoring these basic principles. The book is invaluable for a discrete and finite mathematics course at the freshman undergraduate level or for self-study since there are full solutions to the exercises in an appendix. "Written with clarity, humor and relevant real-world examples, Basic Discrete Mathematics is a wonderful introduction to discrete mathematical reasoning."- Arthur Benjamin, Professor of Mathematics at Harvey Mudd College, and author of The Magic of Math

## Mathematical Structures for Computer Science

**Author**: Judith L. Gersting**Publisher:**Macmillan**ISBN:**9780716768647**Category:**Mathematics**Page:**807**View:**4821

This edition offers a pedagogically rich and intuitive introduction to discrete mathematics structures. It meets the needs of computer science majors by being both comprehensive and accessible.

## Loose Leaf for Discrete Mathematics and Its Applications

**Author**: Kenneth H Rosen**Publisher:**McGraw-Hill Education**ISBN:**9781259731280**Category:**Mathematics**Page:**1120**View:**7537

Rosen's Discrete Mathematics and its Applications presents a precise, relevant, comprehensive approach to mathematical concepts. This world-renowned best-selling text was written to accommodate the needs across a variety of majors and departments, including mathematics, computer science, and engineering. As the market leader, the book is highly flexible, comprehensive and a proven pedagogical teaching tool for instructors. Digital is becoming increasingly important and gaining popularity, crowning Connect as the digital leader for this discipline. McGraw-Hill Education's Connect, available as an optional, add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect allows the professor to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers and may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.

## Handbook of Mathematical Induction

*Theory and Applications*

**Author**: David S. Gunderson**Publisher:**Discrete Mathematics and its Applications**ISBN:**9781138199019**Category:****Page:**921**View:**9834

Handbook of Mathematical Induction: Theory and Applications shows how to find and write proofs via mathematical induction. This comprehensive book covers the theory, the structure of the written proof, all standard exercises, and hundreds of application examples from nearly every area of mathematics. In the first part of the book, the author discusses different inductive techniques, including well-ordered sets, basic mathematical induction, strong induction, double induction, infinite descent, downward induction, and several variants. He then introduces ordinals and cardinals, transfinite induction, the axiom of choice, Zorn s lemma, empirical induction, and fallacies and induction. He also explains how to write inductive proofs. The next part contains more than 750 exercises that highlight the levels of difficulty of an inductive proof, the variety of inductive techniques available, and the scope of results provable by mathematical induction. Each self-contained chapter in this section includes the necessary definitions, theory, and notation and covers a range of theorems and problems, from fundamental to very specialized. The final part presents either solutions or hints to the exercises. Slightly longer than what is found in most texts, these solutions provide complete details for every step of the problem-solving process. "

## Introducing Game Theory and its Applications

**Author**: Elliott Mendelson**Publisher:**CRC Press**ISBN:**1482285878**Category:**Mathematics**Page:**272**View:**7209

The mathematical study of games is an intriguing endeavor with implications and applications that reach far beyond tic-tac-toe, chess, and poker to economics, business, and even biology and politics. Most texts on the subject, however, are written at the graduate level for those with strong mathematics, economics, or business backgrounds. In a clear and refreshing departure from this trend, Introducing Game Theory and its Applications presents an easy-to-read introduction to the basic ideas and techniques of game theory. After a brief introduction, the author begins with a chapter devoted to combinatorial games--a topic neglected or treated minimally in most other texts. The focus then shifts to two-person zero-sum games and their solution. Here the author presents the simplex method, based on linear programming, for solving these games and develops within his presentation the required background in linear programming. The final chapter presents some of the fundamental ideas and tools of non-zero-sum games and games with more than two players, including an introduction to cooperative game theory. This book will not only satisfy the curiosity of those whose interest in the subject was piqued by the 1994 Nobel Prize awarded to Harsanyi, Nash, and Selten. It also prepares its readers for more advanced study of game theory's applications in economics, business, and the physical, biological, and social sciences.

## Mathematical Logic for Computer Science

**Author**: Mordechai Ben-Ari**Publisher:**Springer Science & Business Media**ISBN:**1447141296**Category:**Mathematics**Page:**346**View:**9423

Mathematical Logic for Computer Science is a mathematics textbook with theorems and proofs, but the choice of topics has been guided by the needs of students of computer science. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and easy to understand. The uniform use of tableaux-based techniques facilitates learning advanced logical systems based on what the student has learned from elementary systems. The logical systems presented are: propositional logic, first-order logic, resolution and its application to logic programming, Hoare logic for the verification of sequential programs, and linear temporal logic for the verification of concurrent programs. The third edition has been entirely rewritten and includes new chapters on central topics of modern computer science: SAT solvers and model checking.