# Search Results for "introduction-to-partial-differential-equations-for-scientists-and-engineers-using-mathematica"

## Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica • Author: Kuzman Adzievski,Abul Hasan Siddiqi
• Publisher: CRC Press
• ISBN: 1466510579
• Category: Mathematics
• Page: 648
• View: 5898
With a special emphasis on engineering and science applications, this textbook provides a mathematical introduction to PDEs at the undergraduate level. It takes a new approach to PDEs by presenting computation as an integral part of the study of differential equations. The authors use Mathematica® along with graphics to improve understanding and interpretation of concepts. They also present exercises in each chapter and solutions to selected examples. Topics discussed include Laplace and Fourier transforms as well as Sturm-Liouville boundary value problems.

## MATHEMATICA kompakt Mathematische Problemlösungen für Ingenieure, Mathematiker und Naturwissenschaftler

• Author: Hans Benker
• Publisher: Springer-Verlag
• ISBN: 3662496119
• Category: Mathematics
• Page: 295
• View: 2992
Dieses Buch bietet eine kurze und verständliche Einführung in das Softwarepaket MATHEMATICA und zeigt dessen Anwendung auf Problemstellungen aus der Ingenieurmathematik. Zunächst werden der Aufbau, die Arbeitsweise und die Möglichkeiten von MATHEMATICA näher beschrieben. Anschließend wird dieses Grundwissen auf die Grundlagen der Ingenieurmathematik, z.B. Matrizen, Differential- und Integralrechnung, angewendet. Der letzte Teil des Buches widmet sich den fortgeschrittenen Themen der Ingenieurmathematik. Dabei werden Differentialgleichungen, Transformationen, Optimierung, Wahrscheinlichkeitsrechnung und Statistik behandelt.Die Berechnungen werden jeweils ausführlich dargestellt und an zahlreichen Beispielen illustriert.

## Partielle Differentialgleichungen und numerische Methoden • Author: Stig Larsson,Vidar Thomee
• Publisher: Springer-Verlag
• ISBN: 3540274227
• Category: Mathematics
• Page: 272
• View: 9040
Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

## Introduction to Partial Differential Equations with MATLAB • Author: Jeffery M. Cooper,Jeffery Cooper
• Publisher: Springer Science & Business Media
• ISBN: 9780817639679
• Category: Mathematics
• Page: 540
• View: 2826
The subject of partial differential equations has an unchanging core of material but is constantly expanding and evolving. Introduction to Partial Differential Equations with MATLAB is a careful integration of traditional core topics with modern topics, taking full advantage of the computational power of MATLAB to enhance the learning experience. This advanced text/reference is an introduction to partial differential equations covering the traditional topics within a modern context. To provide an up-to-date treatment, techniques of numerical computation have been included with carefully selected nonlinear topics, including nonlinear first order equations. Each equation studied is placed in the appropriate physical context. The analytical aspects of solutions are discussed in an integrated fashion with extensive examples and exercises, both analytical and computational. The book is excellent for classroom use and can be used for self-study purposes. Topic and Features: • Nonlinear equations including nonlinear conservation laws; • Dispersive wave equations and the Schrodinger equation; • Numerical methods for each core equation including finite difference methods, finite element methods, and the fast Fourier transform; • Extensive use of MATLAB programs in exercise sets. MATLAB m files for numerical and graphics programs available by ftp from this web site. This text/reference is an excellent resources designed to introduce advanced students in mathematics, engineering and sciences to partial differential equations. It is also suitable as a self-study resource for professionals and practitioners.

## Partial Differential Equations and Mathematica • Author: Prem K. Kythe,Michael R. Schäferkotter,Pratap Puri
• Publisher: CRC Press
• ISBN: 9781584883142
• Category: Mathematics
• Page: 440
• View: 1177
Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.

## Partial Differential Equations An Introduction with Mathematica and MAPLE

• Author: Ioannis P. Stavroulakis,Stepan A. Tersian
• Publisher: World Scientific
• ISBN: 9789812388155
• Category: Mathematics
• Page: 306
• View: 7764
This textbook is a self-contained introduction to partial differential equations.It has been designed for undergraduates and first year graduate students majoring in mathematics, physics, engineering, or science.The text provides an introduction to the basic equations of mathematical physics and the properties of their solutions, based on classical calculus and ordinary differential equations. Advanced concepts such as weak solutions and discontinuous solutions of nonlinear conservation laws are also considered.

## An Introduction to Partial Differential Equations with MATLAB, Second Edition • Author: Matthew P. Coleman
• Publisher: CRC Press
• ISBN: 1439898472
• Category: Mathematics
• Page: 683
• View: 2288
An Introduction to Partial Differential Equations with MATLAB®, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat, the propagation of sound waves, the spread of algae along the ocean’s surface, the fluctuation in the price of a stock option, and the quantum mechanical behavior of a hydrogen atom. Suitable for a two-semester introduction to PDEs and Fourier series for mathematics, physics, and engineering students, the text teaches the equations based on method of solution. It provides both physical and mathematical motivation as much as possible. The author treats problems in one spatial dimension before dealing with those in higher dimensions. He covers PDEs on bounded domains and then on unbounded domains, introducing students to Fourier series early on in the text. Each chapter’s prelude explains what and why material is to be covered and considers the material in a historical setting. The text also contains many exercises, including standard ones and graphical problems using MATLAB. While the book can be used without MATLAB, instructors and students are encouraged to take advantage of MATLAB’s excellent graphics capabilities. The MATLAB code used to generate the tables and figures is available in an appendix and on the author’s website.

## Solution Techniques for Elementary Partial Differential Equations • Author: Christian Constanda
• Publisher: CRC Press
• ISBN: 1498704980
• Category: Mathematics
• Page: 358
• View: 9990
Solution Techniques for Elementary Partial Differential Equations, Third Edition remains a top choice for a standard, undergraduate-level course on partial differential equations (PDEs). Making the text even more user-friendly, this third edition covers important and widely used methods for solving PDEs. New to the Third Edition New sections on the series expansion of more general functions, other problems of general second-order linear equations, vibrating string with other types of boundary conditions, and equilibrium temperature in an infinite strip Reorganized sections that make it easier for students and professors to navigate the contents Rearranged exercises that are now at the end of each section/subsection instead of at the end of the chapter New and improved exercises and worked examples A brief Mathematica® program for nearly all of the worked examples, showing students how to verify results by computer This bestselling, highly praised textbook uses a streamlined, direct approach to develop students’ competence in solving PDEs. It offers concise, easily understood explanations and worked examples that allow students to see the techniques in action.

## Partielle Differentialgleichungen Eine Einführung

• Author: Walter A. Strauss
• Publisher: Springer-Verlag
• ISBN: 366312486X
• Category: Mathematics
• Page: 458
• View: 6749
Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

## Solving Nonlinear Partial Differential Equations with Maple and Mathematica • Author: Inna Shingareva,Carlos Lizárraga-Celaya
• Publisher: Springer Science & Business Media
• ISBN: 370910517X
• Category: Mathematics
• Page: 357
• View: 4361
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).

## Numerical Integration of Space Fractional Partial Differential Equations Vol 2 - Applications from Classical Integer PDEs

• Author: Younes Salehi,William E. Schiesser
• Publisher: Morgan & Claypool Publishers
• ISBN: 1681732106
• Category: Mathematics
• Page: 205
• View: 3826
Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as: •Vol 1: Introduction to Algorithms and Computer Coding in R •Vol 2: Applications from Classical Integer PDEs. Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative. In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are: •Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions •Fisher-Kolmogorov SFPDE •Burgers SFPDE •Fokker-Planck SFPDE •Burgers-Huxley SFPDE •Fitzhugh-Nagumo SFPDE. These SFPDEs were selected because they are integer first order in time and integer second order in space. The variation in the spatial derivative from order two (parabolic) to order one (first order hyperbolic) demonstrates the effect of the spatial fractional order α with 1 ≤ α ≤ 2. All of the example SFPDEs are one dimensional in Cartesian coordinates. Extensions to higher dimensions and other coordinate systems, in principle, follow from the examples in this second volume. The examples start with a statement of the integer PDEs that are then extended to SFPDEs. The format of each chapter is the same as in the first volume. The R routines can be downloaded and executed on a modest computer (R is readily available from the Internet).

## The Art of Modeling in Science and Engineering with Mathematica, Second Edition • Author: Diran Basmadjian,Ramin Farnood
• Publisher: CRC Press
• ISBN: 9781584884606
• Category: Mathematics
• Page: 509
• View: 7283
Thoroughly revised and updated, The Art of Modeling in Science and Engineering with Mathematica®, Second Edition explores the mathematical tools and procedures used in modeling based on the laws of conservation of mass, energy, momentum, and electrical charge. The authors have culled and consolidated the best from the first edition and expanded the range of applied examples to reach a wider audience. The text proceeds, in measured steps, from simple models of real-world problems at the algebraic and ordinary differential equations (ODE) levels to more sophisticated models requiring partial differential equations. The traditional solution methods are supplemented with Mathematica , which is used throughout the text to arrive at solutions for many of the problems presented. The text is enlivened with a host of illustrations and practice problems drawn from classical and contemporary sources. They range from Thomson’s famous experiment to determine e/m and Euler’s model for the buckling of a strut to an analysis of the propagation of emissions and the performance of wind turbines. The mathematical tools required are first explained in separate chapters and then carried along throughout the text to solve and analyze the models. Commentaries at the end of each illustration draw attention to the pitfalls to be avoided and, perhaps most important, alert the reader to unexpected results that defy conventional wisdom. These features and more make the book the perfect tool for resolving three common difficulties: the proper choice of model, the absence of precise solutions, and the need to make suitable simplifying assumptions and approximations. The book covers a wide range of physical processes and phenomena drawn from various disciplines and clearly illuminates the link between the physical system being modeled and the mathematical expression that results.

## The Art of Modeling in Science and Engineering with Mathematica • Author: Diran Basmadjian
• Publisher: CRC Press
• ISBN: 9781439858172
• Category: Mathematics
• Page: 688
• View: 6328
Modeling is practiced in engineering and all physical sciences. Many specialized texts exist - written at a high level - that cover this subject. However, students and even professionals often experience difficulties in setting up and solving even the simplest of models. This can be attributed to three difficulties: the proper choice of model, the absence of precise solutions, and the necessity to make suitable simplifying assumptions and approximations. Overcoming these difficulties is the focus of The Art of Modeling in Science and Engineering. The text is designed for advanced undergraduate and graduate students and practicing professionals in the sciences and engineering with an interest in Modeling based on Mass, Energy and Momentum or Force Balances. The book covers a wide range of physical processes and phenomena drawn from chemical, mechanical, civil, environmental sciences and bio- sciences. A separate section is devoted to "real World" industrial problems. The author explains how to choose the simplest model, obtain an appropriate solution to the problem and make simplifying assumptions/approximations.

## Partial Differential Equations • Author: Bhamra,Bhamra K. S.
• Publisher: PHI Learning Pvt. Ltd.
• ISBN: 8120339177
• Category: Differential equations, Partial
• Page: 561
• View: 8419

## Introduction to the Calculus of Variations and Control with Modern Applications • Author: John A. Burns
• Publisher: CRC Press
• ISBN: 146657139X
• Category: Mathematics
• Page: 562
• View: 8485
Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions and discusses the importance of distinguishing between the necessary and sufficient conditions. In the first part of the text, the author develops the calculus of variations and provides complete proofs of the main results. He explains how the ideas behind the proofs are essential to the development of modern optimization and control theory. Focusing on optimal control problems, the second part shows how optimal control is a natural extension of the classical calculus of variations to more complex problems. By emphasizing the basic ideas and their mathematical development, this book gives you the foundation to use these mathematical tools to then tackle new problems. The text moves from simple to more complex problems, allowing you to see how the fundamental theory can be modified to address more difficult and advanced challenges. This approach helps you understand how to deal with future problems and applications in a realistic work environment.

## Differential Equations with Mathematica • Author: Martha L Abell,James P. Braselton
• Publisher: Academic Press
• ISBN: 1483213919
• Category: Mathematics
• Page: 640
• View: 3199
Differential Equations with Mathematica presents an introduction and discussion of topics typically covered in an undergraduate course in ordinary differential equations as well as some supplementary topics such as Laplace transforms, Fourier series, and partial differential equations. It also illustrates how Mathematica is used to enhance the study of differential equations not only by eliminating the computational difficulties, but also by overcoming the visual limitations associated with the solutions of differential equations. The book contains chapters that present differential equations and illustrate how Mathematica can be used to solve some typical problems. The text covers topics on differential equations such as first-order ordinary differential equations, higher order differential equations, power series solutions of ordinary differential equations, the Laplace Transform, systems of ordinary differential equations, and Fourier Series and applications to partial differential equations. Applications of these topics are provided as well. Engineers, computer scientists, physical scientists, mathematicians, business professionals, and students will find the book useful.

## Modeling and Control in Vibrational and Structural Dynamics A Differential Geometric Approach

• Author: Peng-Fei Yao
• Publisher: CRC Press
• ISBN: 1439834555
• Category: Mathematics
• Page: 419
• View: 7419
Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach describes the control behavior of mechanical objects, such as wave equations, plates, and shells. It shows how the differential geometric approach is used when the coefficients of partial differential equations (PDEs) are variable in space (waves/plates), when the PDEs themselves are defined on curved surfaces (shells), and when the systems have quasilinear principal parts. To make the book self-contained, the author starts with the necessary background on Riemannian geometry. He then describes differential geometric energy methods that are generalizations of the classical energy methods of the 1980s. He illustrates how a basic computational technique can enable multiplier schemes for controls and provide mathematical models for shells in the form of free coordinates. The author also examines the quasilinearity of models for nonlinear materials, the dependence of controllability/stabilization on variable coefficients and equilibria, and the use of curvature theory to check assumptions. With numerous examples and exercises throughout, this book presents a complete and up-to-date account of many important advances in the modeling and control of vibrational and structural dynamics.

## A Workbook for Differential Equations • Author: Bernd S. W. Schröder
• Publisher: John Wiley & Sons
• ISBN: 0470447516
• Category: Mathematics
• Page: 340
• View: 3132

## Mathematics for Physical Science and Engineering Symbolic Computing Applications in Maple and Mathematica

• Author: Frank E. Harris
• Publisher: Academic Press
• ISBN: 0128010495
• Category: Mathematics
• Page: 944
• View: 4963
Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. Clarifies each important concept to students through the use of a simple example and often an illustration Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) Shows how symbolic computing enables solving a broad range of practical problems

## Computer Algebra Recipes A Gourmet’s Guide to the Mathematical Models of Science

• Author: Richard Enns,George C. McGuire
• Publisher: Springer Science & Business Media
• ISBN: 9780387951485
• Category: Mathematics
• Page: 778
• View: 7649