Search Results for "linear-partial-differential-equations-for-scientists-and-engineers"

Linear Partial Differential Equations for Scientists and Engineers

Linear Partial Differential Equations for Scientists and Engineers

  • Author: Tyn Myint-U,Lokenath Debnath
  • Publisher: Springer Science & Business Media
  • ISBN: 9780817645601
  • Category: Mathematics
  • Page: 778
  • View: 2990
DOWNLOAD NOW »
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.

Nonlinear Partial Differential Equations for Scientists and Engineers

Nonlinear Partial Differential Equations for Scientists and Engineers

  • Author: Lokenath Debnath
  • Publisher: Springer Science & Business Media
  • ISBN: 9780817682651
  • Category: Mathematics
  • Page: 860
  • View: 3770
DOWNLOAD NOW »
The revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, improves on an already highly complete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide.

Partial differential equations for scientists and engineers

Partial differential equations for scientists and engineers

  • Author: Tyn Myint U.,Lokenath Debnath
  • Publisher: North-Holland
  • ISBN: N.A
  • Category: Mathematics
  • Page: 554
  • View: 9003
DOWNLOAD NOW »

Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition

Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition

  • Author: Andrei D. Polyanin,Vladimir E. Nazaikinskii
  • Publisher: CRC Press
  • ISBN: 1466581492
  • Category: Mathematics
  • Page: 1609
  • View: 7039
DOWNLOAD NOW »
Includes nearly 4,000 linear partial differential equations (PDEs) with solutions Presents solutions of numerous problems relevant to heat and mass transfer, wave theory, hydrodynamics, aerodynamics, elasticity, acoustics, electrodynamics, diffraction theory, quantum mechanics, chemical engineering sciences, electrical engineering, and other fields Outlines basic methods for solving various problems in science and engineering Contains much more linear equations, problems, and solutions than any other book currently available Provides a database of test problems for numerical and approximate analytical methods for solving linear PDEs and systems of coupled PDEs New to the Second Edition More than 700 pages with 1,500+ new first-, second-, third-, fourth-, and higher-order linear equations with solutions Systems of coupled PDEs with solutions Some analytical methods, including decomposition methods and their applications Symbolic and numerical methods for solving linear PDEs with Maple, Mathematica, and MATLAB® Many new problems, illustrative examples, tables, and figures To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity.

Partial Differential Equations for Scientists and Engineers

Partial Differential Equations for Scientists and Engineers

  • Author: Stanley J. Farlow
  • Publisher: Courier Corporation
  • ISBN: 0486134733
  • Category: Mathematics
  • Page: 414
  • View: 3650
DOWNLOAD NOW »
Practical text shows how to formulate and solve partial differential equations. Coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, numerical and approximate methods. Solution guide available upon request. 1982 edition.

Partial differential equations for scientists and engineers

Partial differential equations for scientists and engineers

  • Author: Geoffrey Stephenson
  • Publisher: Longman Publishing Group
  • ISBN: N.A
  • Category: Mathematics
  • Page: 161
  • View: 4790
DOWNLOAD NOW »

Partielle Differentialgleichungen

Partielle Differentialgleichungen

Eine Einführung

  • Author: Walter A. Strauss
  • Publisher: Springer-Verlag
  • ISBN: 366312486X
  • Category: Mathematics
  • Page: 458
  • View: 5660
DOWNLOAD NOW »
Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

Boundary Value Problems of Linear Partial Differential Equations for Engineers and Scientists

Boundary Value Problems of Linear Partial Differential Equations for Engineers and Scientists

  • Author: Shien-siu Shu
  • Publisher: World Scientific
  • ISBN: 9789971504182
  • Category: Mathematics
  • Page: 270
  • View: 6422
DOWNLOAD NOW »
This book is a revised version of the author's lecture notes in a graduate course of applied mathematics. It is based on the idea that it may be more interesting to learn mathematics through the introduction of concrete examples. The materials are organised in a logical order that transmits the package of mathematical knowledge and methods to the students in an efficient manner.

Differential Equations and Group Methods for Scientists and Engineers

Differential Equations and Group Methods for Scientists and Engineers

  • Author: James M. Hill
  • Publisher: CRC Press
  • ISBN: 9780849344428
  • Category: Mathematics
  • Page: 224
  • View: 1907
DOWNLOAD NOW »
Differential Equations and Group Methods for Scientists and Engineers presents a basic introduction to the technically complex area of invariant one-parameter Lie group methods and their use in solving differential equations. The book features discussions on ordinary differential equations (first, second, and higher order) in addition to partial differential equations (linear and nonlinear). Each chapter contains worked examples with several problems at the end; answers to these problems and hints on how to solve them are found at the back of the book. Students and professionals in mathematics, science, and engineering will find this book indispensable for developing a fundamental understanding of how to use invariant one-parameter group methods to solve differential equations.

Vorlesungen über partielle Differentialgleichungen

Vorlesungen über partielle Differentialgleichungen

  • Author: Vladimir I. Arnold
  • Publisher: Springer-Verlag
  • ISBN: 3540350314
  • Category: Mathematics
  • Page: 174
  • View: 2872
DOWNLOAD NOW »
Nach seinem bekannten und viel verwendeten Buch über gewöhnliche Differentialgleichungen widmet sich der berühmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten Art führt er über einen geometrischen, anschaulichen Weg in das Thema ein, und ermöglicht den Lesern so ein vertieftes Verständnis der Natur der partiellen Differentialgleichungen. Für Studierende der Mathematik und Physik ist dieses Buch ein Muss. Wie alle Bücher Vladimir Arnolds ist dieses Buch voller geometrischer Erkenntnisse. Arnold illustriert jeden Grundsatz mit einer Abbildung. Das Buch behandelt die elementarsten Teile des Fachgebiets and beschränkt sich hauptsächlich auf das Cauchy-Problem und das Neumann-Problems für die klassischen Lineargleichungen der mathematischen Physik, insbesondere auf die Laplace-Gleichung und die Wellengleichung, wobei die Wärmeleitungsgleichung und die Korteweg-de-Vries-Gleichung aber ebenfalls diskutiert werden. Die physikalische Intuition wird besonders hervorgehoben. Eine große Anzahl von Problemen ist übers ganze Buch verteilt, und ein ganzer Satz von Aufgaben findet sich am Ende. Was dieses Buch so einzigartig macht, ist das besondere Talent Arnolds, ein Thema aus einer neuen, frischen Perspektive zu beleuchten. Er lüftet gerne den Schleier der Verallgemeinerung, der so viele mathematische Texte umgibt, und enthüllt die im wesentlichen einfachen, intuitiven Ideen, die dem Thema zugrunde liegen. Das kann er besser als jeder andere mathematische Autor.

Numerische Behandlung partieller Differentialgleichungen

Numerische Behandlung partieller Differentialgleichungen

  • Author: Christian Großmann,Hans-Görg Roos
  • Publisher: Springer-Verlag
  • ISBN: 9783519220893
  • Category: Mathematics
  • Page: 572
  • View: 6567
DOWNLOAD NOW »
Mathematiker, Naturwissenschaftler und Ingenieure erhalten mit diesem Lehrbuch eine Einführung in die numerische Behandlung partieller Differentialgleichungen. Diskutiert werden die grundlegenden Verfahren - Finite Differenzen, Finite Volumen und Finite Elemente - für die wesentlichen Typen partieller Differentialgleichungen: elliptische, parabolische und hyperbolische Gleichungen. Einbezogen werden auch moderne Methoden zur Lösung der diskreten Probleme. Hinweise auf aktuelle Software sowie zahlreiche Beispiele und Übungsaufgaben runden diese Einführung ab.

Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition

Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition

  • Author: Andrei D. Polyanin,Vladimir E. Nazaikinskii
  • Publisher: Chapman and Hall/CRC
  • ISBN: 9781466581456
  • Category: Mathematics
  • Page: 1632
  • View: 9781
DOWNLOAD NOW »
This large mathematical reference for scientists and engineers now contains over 3,200 linear partial differential equations and linear physics equations with solutions as well as exact asymptotic, approximate analytical, numeric, symbolic and qualitative methods for solving and analyzing linear equations. In addition, first, second, third, fourth and higher order linear partial differential equations are considered. A number of new linear equations, exact solutions transformations and methods are described along with applications from heat and mass transfer, aerodynamics, elasticity, acoustics, electrostatics, and many other fields.

Numerical Solution of Partial Differential Equations in Science and Engineering

Numerical Solution of Partial Differential Equations in Science and Engineering

  • Author: Leon Lapidus,George F. Pinder
  • Publisher: John Wiley & Sons
  • ISBN: 1118031210
  • Category: Mathematics
  • Page: 677
  • View: 7751
DOWNLOAD NOW »
From the reviews of Numerical Solution of Partial Differential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, even exhaustive, survey of the subject . . . [It] is unique in that it covers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic) mode of presentation. Many different computational schemes are described in great detail . . . Numerous practical examples and applications are described from beginning to the end, often with calculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages to lucid developments of the methods [for solving partial differential equations] . . . the writing is very polished and I found it a pleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen and Eli L. Isaacson. A modern, practical look at numerical analysis, this book guides readers through a broad selection of numerical methods, implementation, and basic theoretical results, with an emphasis on methods used in scientific computation involving differential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan. Presenting an easily accessible treatment of mathematical methods for scientists and engineers, this acclaimed work covers fluid mechanics and calculus of variations as well as more modern methods-dimensional analysis and scaling, nonlinear wave propagation, bifurcation, and singular perturbation. 1996 (0-471-16513-1) 496 pp.

Nonlinear Partial Differential Equations in Engineering

Nonlinear Partial Differential Equations in Engineering

  • Author: W. F. Ames
  • Publisher: Academic Press
  • ISBN: 008095524X
  • Category: Mathematics
  • Page: 510
  • View: 1797
DOWNLOAD NOW »
Nonlinear Partial Differential Equations in Engineering

Transform Methods for Solving Partial Differential Equations, Second Edition

Transform Methods for Solving Partial Differential Equations, Second Edition

  • Author: Dean G. Duffy
  • Publisher: CRC Press
  • ISBN: 9781420035148
  • Category: Mathematics
  • Page: 728
  • View: 480
DOWNLOAD NOW »
Transform methods provide a bridge between the commonly used method of separation of variables and numerical techniques for solving linear partial differential equations. While in some ways similar to separation of variables, transform methods can be effective for a wider class of problems. Even when the inverse of the transform cannot be found analytically, numeric and asymptotic techniques now exist for their inversion, and because the problem retains some of its analytic aspect, one can gain greater physical insight than typically obtained from a purely numerical approach. Transform Methods for Solving Partial Differential Equations, Second Edition illustrates the use of Laplace, Fourier, and Hankel transforms to solve partial differential equations encountered in science and engineering. The author has expanded the second edition to provide a broader perspective on the applicability and use of transform methods and incorporated a number of significant refinements: New in the Second Edition: · Expanded scope that includes numerical methods and asymptotic techniques for inverting particularly complicated transforms · Discussions throughout the book that compare and contrast transform methods with separation of variables, asymptotic methods, and numerical techniques · Many added examples and exercises taken from a wide variety of scientific and engineering sources · Nearly 300 illustrations--many added to the problem sections to help readers visualize the physical problems · A revised format that makes the book easier to use as a reference: problems are classified according to type of region, type of coordinate system, and type of partial differential equation · Updated references, now arranged by subject instead of listed all together As reflected by the book's organization, content, and many examples, the author's focus remains firmly on applications. While the subject matter is classical, this book gives it a fresh, modern treatment that is exceptionally practical, eminently readable, and especially valuable to anyone solving problems in engineering and the applied sciences.

Nonlinear Partial Differential Equations in Engineering and Applied Science

Nonlinear Partial Differential Equations in Engineering and Applied Science

  • Author: Robert L. Sternberg,Anthony J. Kalinowski,John S. Papadakis
  • Publisher: CRC Press
  • ISBN: 9780824769963
  • Category: Mathematics
  • Page: 504
  • View: 4197
DOWNLOAD NOW »
In this volume are twenty-eight papers from the Conference on Nonlinear Partial Differential Equationsin Engineering and Applied Science, sponsored by the Office of Naval Research and held at the Universityof Rhode Island in June, 1979. Included are contributions from an international group of distinguishedmathematicians, scientists, and engineers coming from a wide variety of disciplines and having a commoninterest in the application of mathematics, particularly nonlinear partial differential equations, to realworld problems.The subject matter ranges from almost purely mathematical topics in numerical analysis and bifurcationtheory to a host of practical applications that involve nonlinear partial differential equations, suchas fluid dynamics, nonlinear waves, elasticity, viscoelasticity, hyperelasticity, solitons, metallurgy, shocklessairfoil design, quantum fields, and Darcy's law on flows in porous media.Non/inear Partial Differential Equations in Engineering and Applied Science focuses on a variety oftopics of specialized, contemporary concern to mathematicians, physical and biological scientists, andengineers who work with phenomena that can be described by nonlinear partial differential equations.

Handbook of First-Order Partial Differential Equations

Handbook of First-Order Partial Differential Equations

  • Author: Andrei D. Polyanin,Valentin F. Zaitsev,Alain Moussiaux
  • Publisher: CRC Press
  • ISBN: 9780415272674
  • Category: Mathematics
  • Page: 520
  • View: 1535
DOWNLOAD NOW »
This book contains about 3000 first-order partial differential equations with solutions. New exact solutions to linear and nonlinear equations are included. The text pays special attention to equations of the general form, showing their dependence upon arbitrary functions. At the beginning of each section, basic solution methods for the corresponding types of differential equations are outlined and specific examples are considered. It presents equations and their applications, including differential geometry, nonlinear mechanics, gas dynamics, heat and mass transfer, wave theory and much more. This handbook is an essential reference source for researchers, engineers and students of applied mathematics, mechanics, control theory and the engineering sciences.

Differentialgleichungen und ihre Anwendungen

Differentialgleichungen und ihre Anwendungen

  • Author: Martin Braun
  • Publisher: Springer-Verlag
  • ISBN: 3642975151
  • Category: Mathematics
  • Page: 598
  • View: 6796
DOWNLOAD NOW »
Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#

Numerical Partial Differential Equations for Environmental Scientists and Engineers

Numerical Partial Differential Equations for Environmental Scientists and Engineers

A First Practical Course

  • Author: Daniel R. Lynch
  • Publisher: Springer Science & Business Media
  • ISBN: 0387236201
  • Category: Science
  • Page: 388
  • View: 8424
DOWNLOAD NOW »
For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations

  • Author: Peter J. Olver
  • Publisher: Springer Science & Business Media
  • ISBN: 3319020994
  • Category: Mathematics
  • Page: 636
  • View: 2198
DOWNLOAD NOW »
This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.