Search Results for "nonlinear-partial-differential-equations-for-scientists-and-engineers"

Nonlinear Partial Differential Equations for Scientists and Engineers

Nonlinear Partial Differential Equations for Scientists and Engineers

  • Author: Lokenath Debnath
  • Publisher: Springer Science & Business Media
  • ISBN: 1489928464
  • Category: Mathematics
  • Page: 593
  • View: 5045
DOWNLOAD NOW »
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.

Linear Partial Differential Equations for Scientists and Engineers

Linear Partial Differential Equations for Scientists and Engineers

  • Author: Tyn Myint-U,Lokenath Debnath
  • Publisher: Springer Science & Business Media
  • ISBN: 9780817645601
  • Category: Mathematics
  • Page: 778
  • View: 1117
DOWNLOAD NOW »
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.

Partielle Differentialgleichungen der Geometrie und der Physik 2

Partielle Differentialgleichungen der Geometrie und der Physik 2

Funktionalanalytische Lösungsmethoden

  • Author: Friedrich Sauvigny
  • Publisher: Springer-Verlag
  • ISBN: 3540275401
  • Category: Mathematics
  • Page: 350
  • View: 4531
DOWNLOAD NOW »
Das zweibändige Lehrbuch behandelt das Gebiet der partiellen Differentialgleichungen umfassend und anschaulich. Der Autor stellt in Band 2 funktionalanalytische Lösungsmethoden vor und erläutert u. a. die Lösbarkeit von Operatorgleichungen im Banachraum, lineare Operatoren im Hilbertraum und Spektraltheorie, die Schaudersche Theorie linearer elliptischer Differentialgleichungen sowie schwache Lösungen elliptischer Differentialgleichungen.

Partial differential equations for scientists and engineers

Partial differential equations for scientists and engineers

  • Author: Tyn Myint U.,Lokenath Debnath
  • Publisher: North-Holland
  • ISBN: N.A
  • Category: Mathematics
  • Page: 554
  • View: 6696
DOWNLOAD NOW »

Nonlinear Partial Differential Equations in Engineering

Nonlinear Partial Differential Equations in Engineering

  • Author: W. F. Ames
  • Publisher: Academic Press
  • ISBN: 008095524X
  • Category: Mathematics
  • Page: 510
  • View: 8508
DOWNLOAD NOW »
Nonlinear Partial Differential Equations in Engineering

Numerical Solution of Partial Differential Equations in Science and Engineering

Numerical Solution of Partial Differential Equations in Science and Engineering

  • Author: Leon Lapidus,George F. Pinder
  • Publisher: John Wiley & Sons
  • ISBN: 1118031210
  • Category: Mathematics
  • Page: 677
  • View: 4647
DOWNLOAD NOW »
From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.

Partial Differential Equations for Scientists and Engineers

Partial Differential Equations for Scientists and Engineers

  • Author: Stanley J. Farlow
  • Publisher: Courier Corporation
  • ISBN: 0486134733
  • Category: Mathematics
  • Page: 414
  • View: 3234
DOWNLOAD NOW »
Practical text shows how to formulate and solve partial differential equations. Coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, numerical and approximate methods. Solution guide available upon request. 1982 edition.

Nonlinear Partial Differential Equations in Engineering and Applied Science

Nonlinear Partial Differential Equations in Engineering and Applied Science

  • Author: Robert L. Sternberg
  • Publisher: Routledge
  • ISBN: 1351428063
  • Category: Mathematics
  • Page: 504
  • View: 1579
DOWNLOAD NOW »
In this volume are twenty-eight papers from the Conference on Nonlinear Partial Differential Equationsin Engineering and Applied Science, sponsored by the Office of Naval Research and held at the Universityof Rhode Island in June, 1979. Included are contributions from an international group of distinguishedmathematicians, scientists, and engineers coming from a wide variety of disciplines and having a commoninterest in the application of mathematics, particularly nonlinear partial differential equations, to realworld problems.The subject matter ranges from almost purely mathematical topics in numerical analysis and bifurcationtheory to a host of practical applications that involve nonlinear partial differential equations, suchas fluid dynamics, nonlinear waves, elasticity, viscoelasticity, hyperelasticity, solitons, metallurgy, shocklessairfoil design, quantum fields, and Darcy's law on flows in porous media.Non/inear Partial Differential Equations in Engineering and Applied Science focuses on a variety oftopics of specialized, contemporary concern to mathematicians, physical and biological scientists, andengineers who work with phenomena that can be described by nonlinear partial differential equations.

Partielle Differentialgleichungen

Partielle Differentialgleichungen

Eine Einführung

  • Author: Walter A. Strauss
  • Publisher: Springer-Verlag
  • ISBN: 366312486X
  • Category: Mathematics
  • Page: 458
  • View: 8925
DOWNLOAD NOW »
Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

Handbook of Linear Partial Differential Equations for Engineers and Scientists

Handbook of Linear Partial Differential Equations for Engineers and Scientists

  • Author: Andrei D. Polyanin
  • Publisher: CRC Press
  • ISBN: 1420035320
  • Category: Mathematics
  • Page: 800
  • View: 5605
DOWNLOAD NOW »
Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with constant and variable coefficients New exact solutions to linear equations and boundary value problems Equations and problems of general form that depend on arbitrary functions Formulas for constructing solutions to nonhomogeneous boundary value problems Second- and higher-order equations and boundary value problems An introductory section outlines the basic definitions, equations, problems, and methods of mathematical physics. It also provides useful formulas for expressing solutions to boundary value problems of general form in terms of the Green's function. Two supplements at the end of the book furnish more tools and information: Supplement A lists the properties of common special functions, including the gamma, Bessel, degenerate hypergeometric, and Mathieu functions, and Supplement B describes the methods of generalized and functional separation of variables for nonlinear partial differential equations.

Partial Differential Equations

Partial Differential Equations

  • Author: Abdul-Majid Wazwaz
  • Publisher: CRC Press
  • ISBN: 9789058093691
  • Category: Mathematics
  • Page: 476
  • View: 609
DOWNLOAD NOW »
This text gathers, revises and explains the newly developed Adomian decomposition method along with its modification and some traditional techniques.

Partielle Differentialgleichungen der Geometrie und der Physik 1

Partielle Differentialgleichungen der Geometrie und der Physik 1

Grundlagen und Integraldarstellungen

  • Author: Friedrich Sauvigny
  • Publisher: Springer-Verlag
  • ISBN: 3540350276
  • Category: Mathematics
  • Page: 418
  • View: 5872
DOWNLOAD NOW »

Advances in Numerical Analysis: Nonlinear partial differential equations and dynamical systems

Advances in Numerical Analysis: Nonlinear partial differential equations and dynamical systems

  • Author: William Allan Light,Science and Engineering Research Council (Great Britain)
  • Publisher: Oxford University Press, USA
  • ISBN: 9780198534389
  • Category: Mathematics
  • Page: 288
  • View: 4827
DOWNLOAD NOW »
The aim of this volume is to present research workers and graduate students in numerical analysis with a state-of-the-art survey of some of the most active areas of numerical analysis. This, and a companion volume, arise from a Summer School intended to cover recent trends in the subject. The chapters are written by the main lecturers at the School. Each is an internationally renowned expert in his respective field. This volume covers research in the numerical analysis of nonlinear phenomena: evolution equations, free boundary problems, spectral methods, and numerical methods for dynamical systems, nonlinear stability, and differential equations on manifolds.

Partial Differential Equations of Elliptic Type

Partial Differential Equations of Elliptic Type

  • Author: Carlo Miranda
  • Publisher: Springer-Verlag
  • ISBN: 3662351471
  • Category: Mathematics
  • Page: 372
  • View: 738
DOWNLOAD NOW »

Handbook of Nonlinear Partial Differential Equations

Handbook of Nonlinear Partial Differential Equations

  • Author: Andrei D. Polyanin,Valentin F. Zaitsev
  • Publisher: CRC Press
  • ISBN: 1135440816
  • Category: Mathematics
  • Page: 840
  • View: 8866
DOWNLOAD NOW »
The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:

Differential Equation Analysis in Biomedical Science and Engineering

Differential Equation Analysis in Biomedical Science and Engineering

Partial Differential Equation Applications with R

  • Author: William E. Schiesser
  • Publisher: John Wiley & Sons
  • ISBN: 1118705165
  • Category: Mathematics
  • Page: 344
  • View: 9473
DOWNLOAD NOW »
Features a solid foundation of mathematical and computationaltools to formulate and solve real-world PDE problems across variousfields With a step-by-step approach to solving partial differentialequations (PDEs), Differential Equation Analysis in BiomedicalScience and Engineering: Partial Differential Equation Applicationswith R successfully applies computational techniques forsolving real-world PDE problems that are found in a variety offields, including chemistry, physics, biology, and physiology. Thebook provides readers with the necessary knowledge to reproduce andextend the computed numerical solutions and is a valuable resourcefor dealing with a broad class of linear and nonlinear partialdifferential equations. The author’s primary focus is on models expressed assystems of PDEs, which generally result from including spatialeffects so that the PDE dependent variables are functions of bothspace and time, unlike ordinary differential equation (ODE) systemsthat pertain to time only. As such, the book emphasizes details ofthe numerical algorithms and how the solutions were computed.Featuring computer-based mathematical models for solving real-worldproblems in the biological and biomedical sciences and engineering,the book also includes: R routines to facilitate the immediate use of computation forsolving differential equation problems without having to firstlearn the basic concepts of numerical analysis and programming forPDEs Models as systems of PDEs and associated initial and boundaryconditions with explanations of the associated chemistry, physics,biology, and physiology Numerical solutions of the presented model equations with adiscussion of the important features of the solutions Aspects of general PDE computation through various biomedicalscience and engineering applications Differential Equation Analysis in Biomedical Science andEngineering: Partial Differential Equation Applications with Ris an excellent reference for researchers, scientists, clinicians,medical researchers, engineers, statisticians, epidemiologists, andpharmacokineticists who are interested in both clinicalapplications and interpretation of experimental data withmathematical models in order to efficiently solve the associateddifferential equations. The book is also useful as a textbook forgraduate-level courses in mathematics, biomedical science andengineering, biology, biophysics, biochemistry, medicine, andengineering.

Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers

Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers

  • Author: Moysey Brio,Gary M. Webb,Aramais R. Zakharian
  • Publisher: Academic Press
  • ISBN: 9780080917047
  • Category: Mathematics
  • Page: 312
  • View: 9617
DOWNLOAD NOW »
It is the first text that in addition to standard convergence theory treats other necessary ingredients for successful numerical simulations of physical systems encountered by every practitioner. The book is aimed at users with interests ranging from application modeling to numerical analysis and scientific software development. It is strongly influenced by the authors research in in space physics, electrical and optical engineering, applied mathematics, numerical analysis and professional software development. The material is based on a year-long graduate course taught at the University of Arizona since 1989. The book covers the first two-semesters of a three semester series. The second semester is based on a semester-long project, while the third semester requirement consists of a particular methods course in specific disciplines like computational fluid dynamics, finite element method in mechanical engineering, computational physics, biology, chemistry, photonics, etc. The first three chapters focus on basic properties of partial differential equations, including analysis of the dispersion relation, symmetries, particular solutions and instabilities of the PDEs; methods of discretization and convergence theory for initial value problems. The goal is to progress from observations of simple numerical artifacts like diffusion, damping, dispersion, and anisotropies to their analysis and management technique, as it is not always possible to completely eliminate them. In the second part of the book we cover topics for which there are only sporadic theoretical results, while they are an integral part and often the most important part for successful numerical simulation. We adopt a more heuristic and practical approach using numerical methods of investigation and validation. The aim is teach students subtle key issues in order to separate physics from numerics. The following topics are addressed: Implementation of transparent and absorbing boundary conditions; Practical stability analysis in the presence of the boundaries and interfaces; Treatment of problems with different temporal/spatial scales either explicit or implicit; preservation of symmetries and additional constraints; physical regularization of singularities; resolution enhancement using adaptive mesh refinement and moving meshes. Self contained presentation of key issues in successful numerical simulation Accessible to scientists and engineers with diverse background Provides analysis of the dispersion relation, symmetries, particular solutions and instabilities of the partial differential equations

Differential Equations and Group Methods for Scientists and Engineers

Differential Equations and Group Methods for Scientists and Engineers

  • Author: James M. Hill
  • Publisher: CRC Press
  • ISBN: 9780849344428
  • Category: Mathematics
  • Page: 224
  • View: 4405
DOWNLOAD NOW »
Differential Equations and Group Methods for Scientists and Engineers presents a basic introduction to the technically complex area of invariant one-parameter Lie group methods and their use in solving differential equations. The book features discussions on ordinary differential equations (first, second, and higher order) in addition to partial differential equations (linear and nonlinear). Each chapter contains worked examples with several problems at the end; answers to these problems and hints on how to solve them are found at the back of the book. Students and professionals in mathematics, science, and engineering will find this book indispensable for developing a fundamental understanding of how to use invariant one-parameter group methods to solve differential equations.

Nonlinear Partial Differential Equations in Engineering by W F Ames

Nonlinear Partial Differential Equations in Engineering by W F Ames

  • Author: W. F. Ames
  • Publisher: Elsevier
  • ISBN: 0080960049
  • Category: Mathematics
  • Page: 322
  • View: 5743
DOWNLOAD NOW »
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering

Vorlesungen über Funktionalgleichungen und ihre Anwendungen

Vorlesungen über Funktionalgleichungen und ihre Anwendungen

  • Author: J. Aczel
  • Publisher: Springer-Verlag
  • ISBN: 3034869045
  • Category: Juvenile Nonfiction
  • Page: 333
  • View: 8434
DOWNLOAD NOW »