Search Results for "partial-differential-equations-for-scientists-and-engineers"

Linear Partial Differential Equations for Scientists and Engineers

Linear Partial Differential Equations for Scientists and Engineers

  • Author: Tyn Myint-U,Lokenath Debnath
  • Publisher: Springer Science & Business Media
  • ISBN: 9780817645601
  • Category: Mathematics
  • Page: 778
  • View: 6720
DOWNLOAD NOW »
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.

Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers

Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers

  • Author: Moysey Brio,Gary M. Webb,Aramais R. Zakharian
  • Publisher: Academic Press
  • ISBN: 9780080917047
  • Category: Mathematics
  • Page: 312
  • View: 859
DOWNLOAD NOW »
It is the first text that in addition to standard convergence theory treats other necessary ingredients for successful numerical simulations of physical systems encountered by every practitioner. The book is aimed at users with interests ranging from application modeling to numerical analysis and scientific software development. It is strongly influenced by the authors research in in space physics, electrical and optical engineering, applied mathematics, numerical analysis and professional software development. The material is based on a year-long graduate course taught at the University of Arizona since 1989. The book covers the first two-semesters of a three semester series. The second semester is based on a semester-long project, while the third semester requirement consists of a particular methods course in specific disciplines like computational fluid dynamics, finite element method in mechanical engineering, computational physics, biology, chemistry, photonics, etc. The first three chapters focus on basic properties of partial differential equations, including analysis of the dispersion relation, symmetries, particular solutions and instabilities of the PDEs; methods of discretization and convergence theory for initial value problems. The goal is to progress from observations of simple numerical artifacts like diffusion, damping, dispersion, and anisotropies to their analysis and management technique, as it is not always possible to completely eliminate them. In the second part of the book we cover topics for which there are only sporadic theoretical results, while they are an integral part and often the most important part for successful numerical simulation. We adopt a more heuristic and practical approach using numerical methods of investigation and validation. The aim is teach students subtle key issues in order to separate physics from numerics. The following topics are addressed: Implementation of transparent and absorbing boundary conditions; Practical stability analysis in the presence of the boundaries and interfaces; Treatment of problems with different temporal/spatial scales either explicit or implicit; preservation of symmetries and additional constraints; physical regularization of singularities; resolution enhancement using adaptive mesh refinement and moving meshes. Self contained presentation of key issues in successful numerical simulation Accessible to scientists and engineers with diverse background Provides analysis of the dispersion relation, symmetries, particular solutions and instabilities of the partial differential equations

Nonlinear Partial Differential Equations for Scientists and Engineers

Nonlinear Partial Differential Equations for Scientists and Engineers

  • Author: Lokenath Debnath
  • Publisher: Springer Science & Business Media
  • ISBN: 9780817682651
  • Category: Mathematics
  • Page: 860
  • View: 8946
DOWNLOAD NOW »
The revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, improves on an already highly complete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide.

Partial Differential Equations for Scientists and Engineers

Partial Differential Equations for Scientists and Engineers

  • Author: Stanley J. Farlow
  • Publisher: Courier Corporation
  • ISBN: 0486134733
  • Category: Mathematics
  • Page: 414
  • View: 9423
DOWNLOAD NOW »
Practical text shows how to formulate and solve partial differential equations. Coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, numerical and approximate methods. Solution guide available upon request. 1982 edition.

Numerical Solution of Partial Differential Equations in Science and Engineering

Numerical Solution of Partial Differential Equations in Science and Engineering

  • Author: Leon Lapidus,George F. Pinder
  • Publisher: John Wiley & Sons
  • ISBN: 1118031210
  • Category: Mathematics
  • Page: 677
  • View: 7796
DOWNLOAD NOW »
From the reviews of Numerical Solution of Partial Differential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, even exhaustive, survey of the subject . . . [It] is unique in that it covers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic) mode of presentation. Many different computational schemes are described in great detail . . . Numerous practical examples and applications are described from beginning to the end, often with calculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages to lucid developments of the methods [for solving partial differential equations] . . . the writing is very polished and I found it a pleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen and Eli L. Isaacson. A modern, practical look at numerical analysis, this book guides readers through a broad selection of numerical methods, implementation, and basic theoretical results, with an emphasis on methods used in scientific computation involving differential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan. Presenting an easily accessible treatment of mathematical methods for scientists and engineers, this acclaimed work covers fluid mechanics and calculus of variations as well as more modern methods-dimensional analysis and scaling, nonlinear wave propagation, bifurcation, and singular perturbation. 1996 (0-471-16513-1) 496 pp.

Partial Differential Equations for Scientists and Engineers

Partial Differential Equations for Scientists and Engineers

  • Author: Geoffrey Stephenson
  • Publisher: World Scientific Publishing Company Incorporated
  • ISBN: 9781860940248
  • Category: Computers
  • Page: 161
  • View: 3240
DOWNLOAD NOW »
Partial differential equations form an essential part of the core mathematics syllabus for undergraduate scientists and engineers. The origins and applications of such equations occur in a variety of different fields, ranging from fluid dynamics, electromagnetism, heat conduction and diffusion, to quantum mechanics, wave propagation and general relativity. This volume introduces the important methods used in the solution of partial differential equations. Written primarily for second-year and final-year students taking physics and engineering courses, it will also be of value to mathematicians studying mathematical methods as part of their course. The text, which assumes only that the reader has followed a good basic first-year ancillary mathematics course, is self-contained and is an unabridged republication of the third edition published by Longman in 1985.

Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica

Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica

  • Author: Kuzman Adzievski,Abul Hasan Siddiqi
  • Publisher: CRC Press
  • ISBN: 1466510579
  • Category: Mathematics
  • Page: 648
  • View: 7537
DOWNLOAD NOW »
With a special emphasis on engineering and science applications, this textbook provides a mathematical introduction to PDEs at the undergraduate level. It takes a new approach to PDEs by presenting computation as an integral part of the study of differential equations. The authors use Mathematica® along with graphics to improve understanding and interpretation of concepts. They also present exercises in each chapter and solutions to selected examples. Topics discussed include Laplace and Fourier transforms as well as Sturm-Liouville boundary value problems.

Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition

Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition

  • Author: Andrei D. Polyanin,Vladimir E. Nazaikinskii
  • Publisher: CRC Press
  • ISBN: 1466581492
  • Category: Mathematics
  • Page: 1609
  • View: 2651
DOWNLOAD NOW »
Includes nearly 4,000 linear partial differential equations (PDEs) with solutions Presents solutions of numerous problems relevant to heat and mass transfer, wave theory, hydrodynamics, aerodynamics, elasticity, acoustics, electrodynamics, diffraction theory, quantum mechanics, chemical engineering sciences, electrical engineering, and other fields Outlines basic methods for solving various problems in science and engineering Contains much more linear equations, problems, and solutions than any other book currently available Provides a database of test problems for numerical and approximate analytical methods for solving linear PDEs and systems of coupled PDEs New to the Second Edition More than 700 pages with 1,500+ new first-, second-, third-, fourth-, and higher-order linear equations with solutions Systems of coupled PDEs with solutions Some analytical methods, including decomposition methods and their applications Symbolic and numerical methods for solving linear PDEs with Maple, Mathematica, and MATLAB® Many new problems, illustrative examples, tables, and figures To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity.

Partial differential equations for scientists and engineers

Partial differential equations for scientists and engineers

  • Author: Tyn Myint U.,Lokenath Debnath
  • Publisher: North-Holland
  • ISBN: N.A
  • Category: Mathematics
  • Page: 554
  • View: 699
DOWNLOAD NOW »

Partial Differential Equations for Scientists and Engineers

Partial Differential Equations for Scientists and Engineers

  • Author: S. J. Farlow
  • Publisher: Createspace Independent Publishing Platform
  • ISBN: 9781541267343
  • Category:
  • Page: 330
  • View: 2322
DOWNLOAD NOW »
Solution Manual: Partial Differential Equations for Scientists and Engineers provides detailed solutions for problems in the textbook, Partial Differential Equations for Scientists and Engineers by S. J. Farlow currently sold by Dover Publications.

Partial Differential Equations for Engineers and Scientists

Partial Differential Equations for Engineers and Scientists

  • Author: J. N. Sharma,Kehar Singh
  • Publisher: Alpha Science International Limited
  • ISBN: 9781842650288
  • Category: Mathematics
  • Page: 268
  • View: 1785
DOWNLOAD NOW »
This comprehensive and compact text book, primarily designed for advanced undergraduate and postgraduate students in mathematics, physics and engineering, presents various well known mathematical techniques such as variable of separable method, integral transform techniques and Green s functions method to solve a number of mathematical problems. This book is enriched with solved examples and supplemented with a variety of exercises at the end of each chapter. The knowledge of advanced calculus, Fourier series and some understanding about ordinary differential equations as well as special functions are the prerequisites for the book. Senior undergraduate and postgraduate students offering courses in partial differential equations, researchers, scientists and engineers working in R&D organisations would find the book to be most useful.

Numerical Partial Differential Equations for Environmental Scientists and Engineers

Numerical Partial Differential Equations for Environmental Scientists and Engineers

A First Practical Course

  • Author: Daniel R. Lynch
  • Publisher: Springer Science & Business Media
  • ISBN: 0387236201
  • Category: Science
  • Page: 388
  • View: 5933
DOWNLOAD NOW »
For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.

Numerical Methods for Solving Partial Differential Equations

Numerical Methods for Solving Partial Differential Equations

A Comprehensive Introduction for Scientists and Engineers

  • Author: George F. Pinder
  • Publisher: John Wiley & Sons
  • ISBN: 1119316383
  • Category: Technology & Engineering
  • Page: 320
  • View: 9286
DOWNLOAD NOW »
A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.

Differential Equation Analysis in Biomedical Science and Engineering

Differential Equation Analysis in Biomedical Science and Engineering

Partial Differential Equation Applications with R

  • Author: William E. Schiesser
  • Publisher: John Wiley & Sons
  • ISBN: 1118705165
  • Category: Mathematics
  • Page: 344
  • View: 6672
DOWNLOAD NOW »
Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the computed numerical solutions and is a valuable resource for dealing with a broad class of linear and nonlinear partial differential equations. The author’s primary focus is on models expressed as systems of PDEs, which generally result from including spatial effects so that the PDE dependent variables are functions of both space and time, unlike ordinary differential equation (ODE) systems that pertain to time only. As such, the book emphasizes details of the numerical algorithms and how the solutions were computed. Featuring computer-based mathematical models for solving real-world problems in the biological and biomedical sciences and engineering, the book also includes: R routines to facilitate the immediate use of computation for solving differential equation problems without having to first learn the basic concepts of numerical analysis and programming for PDEs Models as systems of PDEs and associated initial and boundary conditions with explanations of the associated chemistry, physics, biology, and physiology Numerical solutions of the presented model equations with a discussion of the important features of the solutions Aspects of general PDE computation through various biomedical science and engineering applications Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R is an excellent reference for researchers, scientists, clinicians, medical researchers, engineers, statisticians, epidemiologists, and pharmacokineticists who are interested in both clinical applications and interpretation of experimental data with mathematical models in order to efficiently solve the associated differential equations. The book is also useful as a textbook for graduate-level courses in mathematics, biomedical science and engineering, biology, biophysics, biochemistry, medicine, and engineering.

Nonlinear Partial Differential Equations in Engineering and Applied Science

Nonlinear Partial Differential Equations in Engineering and Applied Science

  • Author: Robert L. Sternberg
  • Publisher: Routledge
  • ISBN: 1351428063
  • Category: Mathematics
  • Page: 504
  • View: 9915
DOWNLOAD NOW »
In this volume are twenty-eight papers from the Conference on Nonlinear Partial Differential Equationsin Engineering and Applied Science, sponsored by the Office of Naval Research and held at the Universityof Rhode Island in June, 1979. Included are contributions from an international group of distinguishedmathematicians, scientists, and engineers coming from a wide variety of disciplines and having a commoninterest in the application of mathematics, particularly nonlinear partial differential equations, to realworld problems.The subject matter ranges from almost purely mathematical topics in numerical analysis and bifurcationtheory to a host of practical applications that involve nonlinear partial differential equations, suchas fluid dynamics, nonlinear waves, elasticity, viscoelasticity, hyperelasticity, solitons, metallurgy, shocklessairfoil design, quantum fields, and Darcy's law on flows in porous media.Non/inear Partial Differential Equations in Engineering and Applied Science focuses on a variety oftopics of specialized, contemporary concern to mathematicians, physical and biological scientists, andengineers who work with phenomena that can be described by nonlinear partial differential equations.

Introduction to Partial Differential Equations with Applications

Introduction to Partial Differential Equations with Applications

  • Author: E. C. Zachmanoglou,Dale W. Thoe
  • Publisher: Courier Corporation
  • ISBN: 048613217X
  • Category: Mathematics
  • Page: 432
  • View: 8030
DOWNLOAD NOW »
This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Computational Partial Differential Equations

Computational Partial Differential Equations

Numerical Methods and Diffpack Programming

  • Author: Hans Petter Langtangen
  • Publisher: Springer Science & Business Media
  • ISBN: 3662011700
  • Category: Mathematics
  • Page: 685
  • View: 1062
DOWNLOAD NOW »
Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.

Differential Equations for Engineers and Scientists

Differential Equations for Engineers and Scientists

  • Author: Yunus Cengel,William Palm III
  • Publisher: McGraw-Hill Higher Education
  • ISBN: 0077418867
  • Category: Technology & Engineering
  • Page: N.A
  • View: 1268
DOWNLOAD NOW »

An Introduction to Differential Equations and Their Applications

An Introduction to Differential Equations and Their Applications

  • Author: Stanley J. Farlow
  • Publisher: Courier Corporation
  • ISBN: 0486135136
  • Category: Mathematics
  • Page: 640
  • View: 7383
DOWNLOAD NOW »
This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.