Search results for: a-combinatorial-introduction-to-topology

A Combinatorial Introduction to Topology

Author : Michael Henle
File Size : 53.67 MB
Format : PDF, Kindle
Download : 563
Read : 951
Download »
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.

Invitation to Combinatorial Topology

Author : Maurice Fréchet
File Size : 82.51 MB
Format : PDF, ePub
Download : 458
Read : 939
Download »
Elementary text, accessible to anyone with a background in high school geometry, covers problems inherent to coloring maps, homeomorphism, applications of Descartes' theorem, topological polygons, more. Includes 108 figures. 1967 edition.

Introduction to Combinatorial Torsions

Author : Vladimir Turaev
File Size : 76.72 MB
Format : PDF, Kindle
Download : 834
Read : 695
Download »
This book is an introduction to combinatorial torsions of cellular spaces and manifolds with special emphasis on torsions of 3-dimensional manifolds. The first two chapters cover algebraic foundations of the theory of torsions and various topological constructions of torsions due to K. Reidemeister, J.H.C. Whitehead, J. Milnor and the author. We also discuss connections between the torsions and the Alexander polynomials of links and 3-manifolds. The third (and last) chapter of the book deals with so-called refined torsions and the related additional structures on manifolds, specifically homological orientations and Euler structures. As an application, we give a construction of the multivariable Conway polynomial of links in homology 3-spheres. At the end of the book, we briefly describe the recent results of G. Meng, C.H. Taubes and the author on the connections between the refined torsions and the Seiberg-Witten invariant of 3-manifolds. The exposition is aimed at students, professional mathematicians and physicists interested in combinatorial aspects of topology and/or in low dimensional topology. The necessary background for the reader includes the elementary basics of topology and homological algebra.

Classical Topology and Combinatorial Group Theory

Author :
File Size : 83.66 MB
Format : PDF, ePub, Mobi
Download : 862
Read : 420
Download »
In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does not understand the simplest topological facts, such as the reason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical develop ment where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recrea. ions like the seven bridges; rather, it resulted from the visualization of problems from other parts of mathematics complex analysis (Riemann), mechanics (poincare), and group theory (Oehn). It is these connections to other parts of mathematics which make topology an important as well as a beautiful subject.

Foundations of Combinatorial Topology

Author : L. S. Pontryagin
File Size : 35.93 MB
Format : PDF, Docs
Download : 811
Read : 735
Download »
Concise, rigorous introduction to homology theory features applications to dimension theory and fixed-point theorems. Lucid coverage of the field includes examinations of complexes and their Betti groups, invariance of the Betti groups, and continuous mappings and fixed points. Proofs are presented in a complete and careful manner. A beneficial text for a graduate-level course, "this little book is an extremely valuable addition to the literature of algebraic topology." — The Mathematical Gazette.

An Illustrated Introduction to Topology and Homotopy

Author : Sasho Kalajdzievski
File Size : 50.2 MB
Format : PDF, ePub, Mobi
Download : 154
Read : 914
Download »
An Illustrated Introduction to Topology and Homotopy explores the beauty of topology and homotopy theory in a direct and engaging manner while illustrating the power of the theory through many, often surprising, applications. This self-contained book takes a visual and rigorous approach that incorporates both extensive illustrations and full proofs. The first part of the text covers basic topology, ranging from metric spaces and the axioms of topology through subspaces, product spaces, connectedness, compactness, and separation axioms to Urysohn’s lemma, Tietze’s theorems, and Stone-Čech compactification. Focusing on homotopy, the second part starts with the notions of ambient isotopy, homotopy, and the fundamental group. The book then covers basic combinatorial group theory, the Seifert-van Kampen theorem, knots, and low-dimensional manifolds. The last three chapters discuss the theory of covering spaces, the Borsuk-Ulam theorem, and applications in group theory, including various subgroup theorems. Requiring only some familiarity with group theory, the text includes a large number of figures as well as various examples that show how the theory can be applied. Each section starts with brief historical notes that trace the growth of the subject and ends with a set of exercises.

Introduction to Topology

Author : Min Yan
File Size : 47.7 MB
Format : PDF, ePub, Docs
Download : 319
Read : 802
Download »
The aim of the book is to give a broad introduction of topology to undergraduate students. It covers the most important and useful parts of the point-set as well as the combinatorial topology. The development of the material is from simple to complex, concrete to abstract, and appeals to the intuition of readers. Attention is also paid to how topology is actually used in the other fields of mathematics. Over 150 illustrations, 160 examples and 600 exercises will help readers to practice and fully understand the subject. Contents: Set and Map Metric Space Graph Topology Topological Concepts Complex Topological Properties Surface Topics in Point Set Topology Index

An Introduction to Combinatorial Topology

Author : William Thomas Lenser
File Size : 62.55 MB
Format : PDF, ePub, Docs
Download : 250
Read : 1215
Download »

Ordered Sets

Author : Bernd Schröder
File Size : 73.3 MB
Format : PDF, ePub, Mobi
Download : 579
Read : 1043
Download »
An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.

Lectures

Author : Walther Mayer
File Size : 63.87 MB
Format : PDF, Mobi
Download : 431
Read : 839
Download »

Elementary Concepts of Topology

Author : Paul Alexandroff
File Size : 89.27 MB
Format : PDF
Download : 295
Read : 982
Download »
Alexandroff's beautiful and elegant introduction to topology was originally published in 1932 as an extension of certain aspects of Hilbert's Anschauliche Geometrie. The text has long been recognized as one of the finest presentations of the fundamental concepts, vital for mathematicians who haven't time for extensive study and for beginning investigators. The book is not a substitute for a systematic text, but an unusually useful intuitive approach to the basic concepts. Its aim is to present these concepts in a clear, elementary fashion without sacrificing their profundity or exactness and to give some indication of how they are useful in increasingly more areas of mathematics. The author proceeds from the basics of set-theoretic topology, through those topological theorems and questions which are based upon the concept of the algebraic complex, to the concept of Betti groups which binds together central topological theories in a whole and upon which applications of topology largely rest. Wholly consistent with current investigations, in which a larger and larger part of topology is governed by the concept of homology, the book deals primarily with the concepts of complex, cycle, and homology. It points the way toward a systematic and entirely geometrically oriented theory of the most general structures of space. First English translation, prepared for Dover by Alan E. Farley. Preface by David Hilbert. Author's Foreword. Index. 25 figures.

Combinatorial Topology Introduction complexes coverings dimension

Author : Pavel Sergeevich Aleksandrov
File Size : 50.54 MB
Format : PDF, ePub
Download : 913
Read : 1291
Download »

Introduction to Topology

Author : Solomon Lefschetz
File Size : 47.62 MB
Format : PDF, Kindle
Download : 135
Read : 738
Download »
In this book, which may be used as a self-contained text for a beginning course, Professor Lefschetz aims to give the reader a concrete working knowledge of the central concepts of modern combinatorial topology: complexes, homology groups, mappings in spheres, homotopy, transformations and their fixed points, manifolds and duality theorems. Each chapter ends with a group of problems. Originally published in 1949. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Combinatorial Topology Introduction complexes coverings dimension

Author : Pavel Sergeevich Aleksandrov
File Size : 21.21 MB
Format : PDF, Mobi
Download : 650
Read : 977
Download »

Surface Topology

Author : P. A. Firby
File Size : 87.42 MB
Format : PDF, Kindle
Download : 787
Read : 1221
Download »
This textbook examines the topology of compact surfaces through the development of simple ideas in plane geometry. A variety of topics are linked with surface topology, such as graph theory, group theory and non-Euclidean geometry, in order to provide an overview of the mathematics involved.

Basic Topology

Author : M.A. Armstrong
File Size : 59.90 MB
Format : PDF
Download : 389
Read : 1056
Download »
In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.

Introduction to Combinatorial Topology

Author : Walther Mayer
File Size : 32.59 MB
Format : PDF
Download : 472
Read : 715
Download »

Which Numbers Are Real

Author : Michael Henle
File Size : 84.84 MB
Format : PDF
Download : 287
Read : 796
Download »
Everyone knows the real numbers, those fundamental quantities that make possible all of mathematics from high school algebra and Euclidean geometry through the Calculus and beyond; and also serve as the basis for measurement in science, industry, and ordinary life. This book surveys alternative real number systems: systems that generalize and extend the real numbers yet stay close to these properties that make the reals central to mathematics. Alternative real numbers include many different kinds of numbers, for example multidimensional numbers (the complex numbers, the quaternions and others), infinitely small and infinitely large numbers (the hyperreal numbers and the surreal numbers), and numbers that represent positions in games (the surreal numbers). Each system has a well-developed theory, including applications to other areas of mathematics and science, such as physics, the theory of games, multi-dimensional geometry, and formal logic. They are all active areas of current mathematical research and each has unique features, in particular, characteristic methods of proof and implications for the philosophy of mathematics, both highlighted in this book. Alternative real number systems illuminate the central, unifying role of the real numbers and include some exciting and eccentric parts of mathematics. Which Numbers Are Real? Will be of interest to anyone with an interest in numbers, but specifically to upper-level undergraduates, graduate students, and professional mathematicians, particularly college mathematics teachers.

Combinatorial Methods in Topology and Algebraic Geometry

Author : John R. Harper
File Size : 64.26 MB
Format : PDF, Kindle
Download : 111
Read : 855
Download »
This collection marks the recent resurgence of interest in combinatorial methods, resulting from their deep and diverse applications both in topology and algebraic geometry. Nearly thirty mathematicians met at the University of Rochester in 1982 to survey several of the areas where combinatorial methods are proving especially fruitful: topology and combinatorial group theory, knot theory, 3-manifolds, homotopy theory and infinite dimensional topology, and four manifolds and algebraic surfaces. This material is accessible to advanced graduate students with a general course in algebraic topology along with some work in combinatorial group theory and geometric topology, as well as to established mathematicians with interests in these areas. For both student and professional mathematicians, the book provides practical suggestions for research directions still to be explored, as well as the aesthetic pleasures of seeing the interplay between algebra and topology which is characteristic of this field. In several areas the book contains the first general exposition published on the subject. In topology, for example, the editors have included M. Cohen, W. Metzler and K. Sauerman's article on ``Collapses of $K\times I$ and group presentations'' and Metzler's ``On the Andrews-Curtis-Conjecture and related problems.'' In addition, J. M. Montesino has provided summary articles on both 3- and 4-manifolds.

Infinite Dimensional Topology

Author : J. van Mill
File Size : 63.84 MB
Format : PDF
Download : 442
Read : 583
Download »
The first part of this book is a text for graduate courses in topology. In chapters 1 - 5, part of the basic material of plane topology, combinatorial topology, dimension theory and ANR theory is presented. For a student who will go on in geometric or algebraic topology this material is a prerequisite for later work. Chapter 6 is an introduction to infinite-dimensional topology; it uses for the most part geometric methods, and gets to spectacular results fairly quickly. The second part of this book, chapters 7 & 8, is part of geometric topology and is meant for the more advanced mathematician interested in manifolds. The text is self-contained for readers with a modest knowledge of general topology and linear algebra; the necessary background material is collected in chapter 1, or developed as needed. One can look upon this book as a complete and self-contained proof of Toruńczyk's Hilbert cube manifold characterization theorem: a compact ANR X is a manifold modeled on the Hilbert cube if and only if X satisfies the disjoint-cells property. In the process of proving this result several interesting and useful detours are made.