Search results for: algae-and-environmental-sustainability

Algae and Environmental Sustainability

Author : Bhaskar Singh
File Size : 60.57 MB
Format : PDF, Kindle
Download : 407
Read : 1261
Download »
This book presents the dynamic role of algae in a sustainable environment. Two major aspects, namely bioenergy and bioremediation, have been elaborated in various chapter contributed by scientists and teachers from different geographical areas throughout the world. Algal biofuels is an emerging area of equal interest to researchers, industries, and policy makers working or focusing on alternative (i.e. renewable) fuels. Algae have been an area of interest due to their wide range of applications. Over the last 5 decades, eukaryotic algae have been used in the aquaculture industry as feed for invertebrates, providing a rich source of antioxidants, dietary fiber, minerals and protein. More recently, there has been a focus on the use of algal biomass in the development of alternative fuels. The extraction of oil from algae has been widely explored as a much more viable feedstock than plant-based oils in large-scale fuel production. using algae as feedstock has the advantages that it doesn’t require arable land and that wastewater can be used as a source of nutrients in their culture. The multifunctional approach of algae includes pollution remediation, carbon sequestration, biofuels production, and delivery of value-added products. However, there are still some obstacles that need to be overcome to make their use as potential feedstock for biofuels techno-economically feasible. In order to maintain the sustainability aspect of algal biofuels, various aspects have to be studied and critically analyzed to assess the long-term sustainability of algal derived biofuels. This book discusses the role of algae as a promising future feedstock for biofuels. They are known to sequester carbon in much larger amounts than plants and as such the book also describes their phycoremediation potential for conventional as well as emerging contaminants. It describes the role of anaerobic digestion in algal biorefineries; bioreactions and process parameters; biogas recovery and reuse. The role of algal biofilm based technology in wastewater treatment and transforming waste into bio-products is discussed, and remediation of sewage water through algae is assessed. The book also describes the production of biohydrogen, bio-oil, biodiesel; and the major bottlenecks in their usage. The emerging characterization techniques of these biofuels (bio-oil and biodiesel) are described, as are the decolorizing potential of algae and the genetic engineering techniques that could enhance the production of lipids in algae. Other aspects of the book include the role of remote sensing technology in the monitoring of algae and a life cycle assessment of algal biofuels.

Environmental Sustainability

Author : P. Thangavel
File Size : 30.70 MB
Format : PDF, ePub
Download : 227
Read : 209
Download »
Covers different categories of green technologies (e.g. biofuels, renewable energy sources, phytoremediation etc.,) in a nutshell -Focuses on next generation technologies which will help to attain the sustainable development -The chapters widely cover for students, faculties and researchers in the scientific arena of Environmentalists, Agriculturalists, Engineers and Policy Makers The World Environment Day 2012 is prepared to embrace green economy. The theme for 2012 encompasses various aspects of human living, ranging from transport to energy to food to sustainable livelihood. Green technology, an eco-friendly clean technology contributes to sustainable development to conserve the natural resources and environment which will meet the demands of the present and future generations. The proposed book mainly focuses on renewable energy sources, organic farming practices, phyto/bioremediation of contaminants, biofuels, green buildings and green chemistry. All of these eco-friendly technologies will help to reduce the amount of waste and pollution and enhance the nation’s economic growth in a sustainable manner. This book is aimed to provide an integrated approach to sustainable environment and it will be of interest not only to environmentalists but also to agriculturists, soil scientists and bridge the gap between the scientists and policy-makers.

ENVIRONMENTAL SUSTAINABILITY ASSESSMENT OF LIQUID TRANSPORTATION BIOFUELS DERIVED FROM ALGAE AND OILSEED

Author :
File Size : 36.70 MB
Format : PDF, Mobi
Download : 547
Read : 976
Download »
Abstract : Liquid transportation biofuels are viewed as a promising alternative to fossil fuels to address energy security and climate change mitigation. Algae biomass and rapeseed were considering among the promising sources for renewable diesel and hydrotreated renewable jet (HRJ) fuel production. However, there are many challenges and technical barriers to implementation of a viable commercial process to produce biofuels from algae/oilseed. Biofuels production must typically go through a complicated series of unit processes for cultivation, harvesting, oil extraction, conversion, and other logistical steps. The impacts of their production pathway in terms of greenhouse gas (GHG) emission, land use impact, fossil energy demand have not been comprehensively studied and concerns have been raised about that large-scale biofuel production may place pressure on fresh water supplies and water quality, biodiversity, soil quality, and other sustainability impacts. Chapter 2 investigated the GHG emission impacts of algae biofuel when evaluating several potential uses for the lipid-extracted algae (LEA) generated as a co-product of algae biofuel production to substitute for the use of animal feed. Results indicated that the benefit from displacing animal feed does not outweigh the incremental burdens associated with replacing the requirements that LEA currently satisfies associated with the biofuel process, resulting in higher GHG emissions for the algae biofuels life cycle. Chapter 3 assessed the LUC impacts using IPCC Tier 1 methodology to assess potential emissions resulting from the conversion of proposed algae facility sites in the U.S. Gulf Coast. Direct LUC impacts appear to be important, which is roughly 6.3% and 12.5% of the total GHG emission over the entire algae renewable diesel life cycle without considering the LUC. Chapter 4 investigated the environmental impacts associated with the novel algae harvesting and oil extraction technologies. Results show that all novel technologies appear to have the potential to provide at least modest decreases in GHG compared to current default algae process technologies. The selection of a particular technology for a unit operation can have consequences that affect other stages of the full biofuels life cycle, both upstream and downstream from the unit operation in question. Chapter 5 developed a life cycle water footprint (WF) analysis informed by inputs from multiple models for rapeseed HRJ fuel production in North Dakota, and evaluated the environmental impacts on water utilization and water quality due to large scale jet production. WF analysis, when combined with water-focused LCA, can be an effective system analysis tool for water sustainability. Discussions also carried out the importance of incorporating allocation within a life cycle approach when conducting biofuel WF analysis. Chapter 6 employed a model-based approach to conduct LCA of HRJ fuel produced from rotation of rapeseed with grain crops (mostly wheat) to replace the fallow period. Results show that introducing fuel oilseeds to existing crop rotations have significant advantages in terms of GHG emissions reductions compared to the current cropping practices. SOC sequestration and N2O emissions vary along the oilseed price points, and are influenced by the fertilizer application, tillage system, crop rotations, and other management actions. The total energy demand for rapeseed HRJ production is larger than fossil jet fuel, however, most of the energy inputs are from renewable biomass and HRJ requires less fossil energy comparing to fossil jet. These results provide some insights on the potential impacts of expanded biofuel production systems in regional and national contexts compared to the current cropping systems and answered the questions of what is the best practice to enhance the sustainability of biofuel production.

Sustainable Development of Algal Biofuels in the United States

Author : National Research Council
File Size : 82.9 MB
Format : PDF, Mobi
Download : 253
Read : 1174
Download »
Biofuels made from algae are gaining attention as a domestic source of renewable fuel. However, with current technologies, scaling up production of algal biofuels to meet even 5 percent of U.S. transportation fuel needs could create unsustainable demands for energy, water, and nutrient resources. Continued research and development could yield innovations to address these challenges, but determining if algal biofuel is a viable fuel alternative will involve comparing the environmental, economic and social impacts of algal biofuel production and use to those associated with petroleum-based fuels and other fuel sources. Sustainable Development of Algal Biofuels was produced at the request of the U.S. Department of Energy.

Algae and Sustainable Technologies

Author : Atul Kumar Upadhyay
File Size : 31.92 MB
Format : PDF, Kindle
Download : 770
Read : 1208
Download »
Algal and sustainable technologies: Bioenergy, Nannotechnology and Green chemistry is an interdisciplinary overview of the world’s major problems; water scarcity, clean environment and energy and their sustenance remedy measures using microalgae. It comprehensively presents the way to tackle the socio-economic issues including food, feed, fuel, medicine and health and also entails the untapped potential of microalgae in environmental management, bioenergy solution and sustainable synthesis of pharmaceutical and nutraceutical products. This book basically emphasizes the success of algae as wonderful feed stocks of future and provides upto date information and sustainable and recreational outlook towards degrading environment and energy crisis. Applicability of fast emerging algae based nanotechnology in bioremediation and production of nanoparticle (AuNP, AgNP etc) are beautifully described along with latest research and findings. Key features: The "waste to best to income" strategies are the main concern of the book and take the edge off the problem of pollution, energy and income. Elucidate the sustainable phycoremediation and nanoparticle functions as low cost approach for various ecosystem services. Information regarding pharmaceuticals, nutraceuticals and other algae based value added product synthesis and fate are comprehensively discussed. Knowledge resource, latest research, findings and prospects presented in an accessible manner for researchers, students, eminent scientists, entrepreneurs, professionals and policy maker.

Bioremediation for Environmental Sustainability

Author : Gaurav Saxena
File Size : 40.50 MB
Format : PDF, Mobi
Download : 790
Read : 1245
Download »
Bioremediation for Environmental Sustainability: Toxicity, Mechanisms of Contaminants Degradation, Detoxification and Challenges introduces pollution and toxicity profiles of various organic and inorganic contaminants, including mechanisms of toxicity, degradation, and detoxification by microbes and plants, and their bioremediation approaches for environmental sustainability. The book also covers many advanced technologies in the field of bioremediation and phytoremediation, including electro-bioremediation, microbial fuel cells, nano-bioremediation, constructed wetlands, phytotechnologies, and many more, which are lacking in other competitive titles existing in the market. The book includes updated information, as well as future directions for research, in the field of bioremediation of industrial wastes. This book is a reference for students, researchers, scientists, and professionals in the fields of microbiology, biotechnology, environmental sciences, eco-toxicology, environmental remediation, and waste management, especially those who aspire to work on the biodegradation and bioremediation of industrial wastes and environmental pollutants for environmental sustainability. Environmental safety and sustainability with rapid industrialization is one of the major challenges worldwide. Industries are the key drivers in the world economy, but these are also the major polluters due to discharge of potentially toxic and hazardous wastes containing various organic and inorganic pollutants, which cause environmental pollution and severe toxic effects in living beings. Introduces pollution and toxicity profiles of environmental contaminants and industrial wastes, including oil refinery wastewater, distillery wastewater, tannery wastewater, textile wastewater, mine tailing wastes, plastic wastes, and more Describes underlying mechanisms of degradation and detoxification of emerging organic and inorganic contaminants with enzymatic roles Focuses on recent advances and challenges in bioremediation and phytoremediation, including microbial enzymes, biosurfactants, microalgae, biofilm, archaea, genetically engineered organisms, and more Describes how microbes and plants can be successfully applied for the remediation of potentially toxic industrial wastes and chemical pollutants to protect the environment and public health

Microalgae as a Feedstock for Biofuels

Author : Luisa Gouveia
File Size : 51.24 MB
Format : PDF, Mobi
Download : 795
Read : 1220
Download »
This Brief provides a concise review of the potential use of microalgae for biofuel production. The following topics are highlighted: the advantages of microalgae over conventional biofuel-producing crops; technological processes for energy production using microalgae; microalgal biomass production systems, production rates and costs; algae cultivation strategies and main culture parameters; biomass harvesting technologies and cell disruption; CO2 sequestration; life cycle analysis; and algal biorefinery strategies. The conclusions section discusses the contribution of the technologies described to environmental sustainability and future prospects.

Assessing and Measuring Environmental Impact and Sustainability

Author : Jiří J Klemeš
File Size : 29.47 MB
Format : PDF, ePub, Mobi
Download : 551
Read : 209
Download »
Assessing and Measuring Environmental Impact and Sustainability answers the question “what are the available methodologies to assess the environmental sustainability of a product, system or process? Multiple well-known authors share their expertise in order to give a broad perspective of this issue from a chemical and environmental engineering perspective. This mathematical, quantitative book includes many case studies to assist with the practical application of environmental and sustainability methods. Readers learn how to efficiently assess and use these methods. This book summarizes all relevant environmental methodologies to assess the sustainability of a product and tools, in order to develop more green products or processes. With life cycle assessment as its main methodology, this book speaks to engineers interested in environmental impact and sustainability. Helps engineers to assess, evaluate, and measure sustainability in industry Provides workable approaches to environmental and sustainability assessment Readers learn tools to assess the sustainability of a process or product and to design it in an environmentally friendly way

Ecological Sustainability

Author : Robert B. Northrop
File Size : 83.30 MB
Format : PDF
Download : 639
Read : 808
Download »
Complex systems is a new field of science studying how parts of a system give rise to the collective behaviors of the system, and how the system interacts with its environment. This book examines the complex systems involved in environmental sustainability, and examines the technologies involved to help mitigate human impacts, such as renewable energy, desalination, carbon capture, recycling, etc. It considers the relationships and balance between environmental engineering and science, economics, and human activity, with regard to sustainability.

Biofuels from Algae

Author : Ashok Pandey
File Size : 46.66 MB
Format : PDF, Kindle
Download : 858
Read : 1036
Download »
This book provides in-depth information on basic and applied aspects of biofuels production from algae. It begins with an introduction to the topic, and follows with the basic scientific aspects of algal cultivation and its use for biofuels production, such as photo bioreactor engineering for microalgae production, open culture systems for biomass production and the economics of biomass production. It provides state-of-the-art information on synthetic biology approaches for algae suitable for biofuels production, followed by algal biomass harvesting, algal oils as fuels, biohydrogen production from algae, formation/production of co-products, and more. The book also covers topics such as metabolic engineering and molecular biology for algae for fuel production, life cycle assessment and scale-up and commercialization. It is highly useful and helps you to plan new research and design new economically viable processes for the production of clean fuels from algae. Covers in a comprehensive but concise way most of the algae biomass conversion technologies currently available Lists all the products produced from algae, i.e. biohydrogen, fuel oils, etc., their properties and potential uses Includes the economics of the various processes and the necessary steps for scaling them up

Green Chemistry for Environmental Sustainability

Author : Sanjay K. Sharma
File Size : 68.82 MB
Format : PDF, ePub
Download : 748
Read : 457
Download »
When the Nobel Prize Committee recognized the importance of green chemistry with its 2005 Nobel Prize for Chemistry, this relatively new science came into its own. Although no concerted agreement has been reached yet about the exact content and limits of this interdisciplinary discipline, there seems to be increasing interest in environmental topic

Phytoremediation Potential of Bioenergy Plants

Author : Kuldeep Bauddh
File Size : 80.72 MB
Format : PDF
Download : 622
Read : 1036
Download »
The globally escalating population necessitates production of more goods and services to fulfil the expanding demands of human beings which resulted in urbanization and industrialization. Uncontrolled industrialization caused two major problems – energy crisis and accelerated environmental pollution throughout the world. Presently, there are technologies which have been proposed or shown to tackle both the problems. Researchers continue to seek more cost effective and environmentally beneficial pathways for problem solving. Plant kingdom comprises of species which have the potential to resolve the couple problem of pollution and energy. Plants are considered as a potential feedstock for development of renewable energy through biofuels. Another important aspect of plants is their capacity to sequester carbon dioxide and absorb, degrade, and stabilize environmental pollutants such as heavy metals, poly-aromatic hydrocarbons, poly-aromatic biphenyls, radioactive materials, and other chemicals. Thus, plants may be used to provide renewable energy generation and pollution mitigation. An approach that could amalgamate the two aspects can be achieved through phytoremediation (using plants to clean up polluted soil and water), and subsequent generation of energy from the phyto-remediator plants. This would be a major advance in achieving sustainability that focuses on optimizing ‘people’ (social issues), ‘planet’ (environmental issues), and ‘profit’ (financial issues). The “Phytoremediation-Cellulosic Biofuels” (PCB) process will be socially beneficial through reducing pollution impacts on people, ecologically beneficial through pollution abatement, and economically viable through providing revenue that supplies an energy source that is renewable and also provides less dependence on importing foreign energy (energy-independence). The utilization of green plants for pollution remediation and energy production will also tackle some other important global concerns like global climate change, ocean acidification, and land degradation through carbon sequestration, reduced emissions of other greenhouse gases, restoration of degraded lands and waters, and more. This book addresses the overall potential of major plants that have the potential to fulfil the dual purposes of phytoremediation and energy generation. The non-edible bioenergy plants that are explored for this dual objective include Jatropha curcas, Ricinus communis, Leucaena leucocephalla, Milletia pinnata, Canabis sativa, Azadirachta indica, and Acacia nilotica. The book addresses all possible aspects of phyto-remediaton and energy generation in a holistic way. The contributors are one of most authoritative experts in the field and have covered and compiled the best content most comprehensively. The book is going to be extremely useful for researchers in the area, research students, academicians and also for policy makers for an inclusive understanding and assessment of potential in plant kingdom to solve the dual problem of energy and pollution.

Biomass Biofuels Biochemicals

Author : Ashok Pandey
File Size : 63.26 MB
Format : PDF, ePub
Download : 937
Read : 887
Download »
Biomass, Biofuels and Biochemicals: Biofuels from Algae, Second Edition provides information on strategies for commercial microalgae based biofuel production, including their cultivation, pre-treatment and conversion methods. The book discusses methods for producing microalgal biomass in large scale by outdoor culturing and outlines new technologies for their use. In addition, it explains how modern genetic engineering enables the generation of recombinant strains that generate higher quantities of feedstock. The complete utilization of microalgal biomass, which can also be obtained from valorizing nutrients from wastewater and industrial exhaust gases, can be efficiently converted to energy rich biofuels and high value pharmaceuticals in a well-defined biorefinery. Includes the current technologies for the cultivation and conversion of energy rich microalgal biomass into biofuels Provides information on all the conversion methods – biochemical and thermochemical conversions Covers other high value products from microalgae and less conventional applications, such as fine chemical production and aviation fuel generation Discusses the economics of microalgal biofuel production and how to accomplish cost competitive results

Encyclopedia of Sustainability Environment and ecology

Author : Robin Morris Collin
File Size : 61.21 MB
Format : PDF, ePub, Docs
Download : 428
Read : 944
Download »
From the Publisher: This expansive encyclopedia breaks new ground, giving definition and focus to an urgent and much-talked-about topic that is extraordinarily wide ranging and all too often misunderstood. As the first major reference work in its field, the three comprehensive volumes span the entire scope of sustainability from ecological concepts to financial concerns to public policy and community action, giving readers a solid foundation from which to think critically about efforts to make a more sustainable world. The Encyclopedia of Sustainability comprises three volumes, each dedicated to one of three equally important contexts in which the term is used: environment and ecology, business and economics, and equity and fairness. Each volume provides authoritative but accessible coverage of basic concepts and terms, as well as policy initiatives, controversies, and future trends. Volumes also include biographical sketches of important contributors to sustainability efforts from the scientific, economic, public policy, and activist realms, plus extensive listings of print and online resources for further exploration.

Green Technologies and Environmental Sustainability

Author : Ritu Singh
File Size : 82.74 MB
Format : PDF
Download : 572
Read : 153
Download »
In the present scenario, green technologies are playing significant role in changing the course of nation’s economic growth towards sustainability and providing an alternative socio-economic model that will enable present and future generations to live in a clean and healthy environment, in harmony with nature. Green technology, which is also known as clean technology, refers to the development and extension of processes, practices, and applications that improve or replace the existing technologies facilitating society to meet their own needs while substantially decreasing the impact of human on the planet, and reducing environmental risks and ecological scarcities. The concepts of Green Technologies, if endorsed and pervaded into the lives of all societies, will facilitate the aim of the Millennium Development Goals of keeping the environment intact and improve it for the civilization to survive. Green Technologies and Environmental Sustainability is focused on the goals of green technologies which are becoming increasingly important for ensuring sustainability. This book provides different perspectives of green technology in sectors like energy, agriculture, waste management and economics and contains recent advancements made towards sustainable development in the field of bioenergy, nanotechnology, green chemistry, bioremediation, degraded land reclamation. This book is written for a large and broad readership, including researchers, scientists, academicians and readers from diverse backgrounds across various fields such as nanotechnology, chemistry, agriculture, environmental science, water engineering, waste management and energy. It could also serve as a reference book for graduates and post-graduate students, faculties, environmentalist and industrial personnel who are working in the area of green technologies.

Biodiesel Feedstocks Technologies Economics and Barriers

Author : Armen B. Avagyan
File Size : 61.59 MB
Format : PDF, Mobi
Download : 437
Read : 900
Download »
Air pollution policy is closely connected with climate change, public health, energy, transport, trade, and agriculture, and generally speaking, the Earth has been pushed to the brink and the damage is becoming increasingly obvious. The transport sector remains a foremost source of air pollutants – a fact that has stimulated the production of biofuels. This book focuses on the biodiesel industry, and proposes a modification of the entire manufacturing chain that would pave the way for further improvements. Oil derived from oilseed plantations/crops is the most commonly used feedstock for the production of biodiesel. At the same time, the UK’s Royal Academy of Engineering and 178 scientists in the Netherlands have determined that some biofuels, such as diesel produced from food crops, have led to more emissions than those produced by fossil fuels. Accordingly, this book re-evaluates the full cycle of biodiesel production in order to help find optimal solutions. It confirms that the production and use of fertilizers for the cultivation of crop feedstocks generate considerably more GHG emissions compared to the mitigation achieved by using biodiesel. To address this fertilization challenge, projecting future biofuel development requires a scenario in which producers shift to an organic agriculture approach that includes the use of microalgae. Among advanced biofuels, algae’s advantages as a feedstock include the highest conversion of solar energy, and the ability to absorb CO2 and pollutants; as such, it is the better choice for future fuels. With regard to the question of why algae’s benefits have not been capitalized on for biofuel production, our analyses indicate that the sole main barrier to realizing algae’s biofuel potential is ineffective international and governmental policies, which create difficulties in reconciling the goals of economic development and environmental protection.

Biohydrogen Production Sustainability of Current Technology and Future Perspective

Author : Anoop Singh
File Size : 34.77 MB
Format : PDF
Download : 376
Read : 802
Download »
Increase in green, renewable and sustainable energy demand due to higher environmental impacts (e.g. Greenhouse gases emissions, climate change, etc.) on consumption of fossil fuel resource put down an extra pressure on government, researchers and industrialists. Among several available biofuel options, biohydrogen is considered as one of the best environmentally clean fuel and a strong candidate to fulfil the future demand of sustainable energy resource. Although, biohydrogen production technology and its use as a fuel is still in infancy stage. Selection of most sustainable production pathway, increase in production upto industrial scale and cost efficiency are some issue still persist with the biohydrogen research. “Biohydrogen Production: Sustainability of Current Technology and Future Perspective” is giving an insight for the sustainable production of biohydrogen at industrial scale. The process of biohydrogen production is complex and to opt the best suited production system for industrial scale is a frantic task. This book will provide an in depth information on all available technologies for biohydrogen production and feedstock options to choose upon. This book is also providing information on present status of the research in the field and possibility to change future fuel economy in to biohydrogen economy. Experts views provided in the chapters by renowned researchers from all over the globe in the field of biohydrogen research made this book a cornucopia of present research and future perspective of biohydrogen. This book is targeted at the researchers working on biohydrogen as well as the bioenergy scientist planning to move towards biohydrogen research. This book will provide a platform for motivation of researchers and industrialists for innovative ideas and thoughts to bring biohydrogen production at industrial scale.

Phycobiotechnology

Author : Jeyabalan Sangeetha
File Size : 48.49 MB
Format : PDF, ePub, Mobi
Download : 574
Read : 1148
Download »
This volume explores and explains the vast uses and benefits of algae as food, feed, and fuel. It covers the most advanced applications of algae in the food and feed industries and for environmental sustainability. With chapters written by experts and which were extensively reviewed by many well-known subject experts and professionals, Phycobiotechnology: Biodiversity and Biotechnology of Algae and Algal Products for Food, Feed, and Fuel provides an abundance of valuable information. Algae are a genetically diverse group of organisms with a wide range of physiological and biochemical characteristics that have unique capabilities in the fields of agriculture, pharmaceuticals, industry, and environment. Algae hold the potential to become the planet’s next major source of energy and a vital part of the solution for climate change and dependence on fossil fuels. Many varieties of algae are also known to be an abundant source of vitamins, minerals, and other nutrients that can boost the human immune system.

Restoration of Wetland Ecosystem A Trajectory Towards a Sustainable Environment

Author : Atul Kumar Upadhyay
File Size : 60.15 MB
Format : PDF, Mobi
Download : 633
Read : 166
Download »
​The risks and consequences of environmental change are increasing, leading to massive losses in terms of ecosystems and having a huge impact on human populations. As such, global thinkers, environmentalists, scientists and policy makers are focusing on finding solutions and ways to sustain life on Earth. Anthropogenic impacts on the climate system can only be mitigated by the restoration of existing natural resources and the sustainable development of the environment and society. This book discusses the potential of green technology in waste management, wetland restoration, presenting the latest developments in the field of bioenergy, green ecology, bioremediation and microbial management. Wetlands are one of Earth’s most important ecosystems, and they provide valuable services to human societies, such as minimizing the impacts of floods, acting as a carbon sink, and offering water purification as well as recreational opportunities. Wetlands may be natural or constructed, and the effectiveness of wetland services largely depends on the diversity of macrophytes affecting the algal production, plant biomass and nutrient status of the system. In addition, they are one of the richest microbial ecosystems on earth: the rhizosphere, soil and water interface enhances wetland services with implications ranging from phytoremediation to microbial bioprospection. However, in order to function properly, they need to be effectively redesigned, reengineered, protected and maintained. The book addresses the dynamic relation between three global concerns: environmental pollution, resource exploitation and sustainability. It describes the utilization of resources like wastes (municipal, industrial, agricultural, mine drainage, tannery, solid, and e waste), plants, algae and microbes for production of renewable biofuel, biofertilizers and other value added products to achieve the goal of sustainable development. The book also discusses the current and future trends in employing wetlands in improving water quality. In addition it presents the latest international research in the fields of wetland science, waste management, carbon sequestration and bioremediation. Highlighting a broad spectrum of topics and strategies for achieving a sustainable environment, the book offers researchers, students and academics insights into utilizing resources in a sustainable way.

Application of Microalgae in Wastewater Treatment

Author : Sanjay Kumar Gupta
File Size : 25.27 MB
Format : PDF, Mobi
Download : 547
Read : 386
Download »
This two-volume work presents comprehensive, accurate information on the present status and contemporary development in phycoremediation of various types of domestic and industrial wastewaters. The volume covers a mechanistic understanding of microalgae based treatment of wastewaters, including current challenges in the treatment of various organic and inorganic pollutants, and future opportunities of bioremediation of wastewater and industrial effluents on an algal platform. The editors compile the work of authors from around the globe, providing insight on key issues and state-of-the-art developments in algal bioremediation that is missing from the currently available body of literature. The volume hopes to serve as a much needed resource for professors, researchers and scientists interested in microalgae applications for wastewater treatment. Volume 2 addresses the various biorefinery aspects and applications of algal-based wastewater treatment in industrial and domestic contexts. The analyses are approached from multiple perspectives, including biotechnology, commercial, economic, and sustainability. The authors discuss the potential of microalgae for integrated biomass production utilizing various resources to treat wastewaters, and include evaluations of the economical and commercialization potential for such processes.