Search results for: artificial-intelligence-for-finance-executives

Artificial Intelligence for Finance Executives

Author : Alexis Besse
File Size : 89.7 MB
Format : PDF, Kindle
Download : 998
Read : 158
Download »
We often hear that AI is revolutionising the financial sector, like no other technology has done before. This book looks beyond these clichés and explores all aspects of this transformation at a deep level. It spells out a vision for the future and answers many questions that are routinely ignored. What do we mean by Artificial Intelligence in finance? How do we move past the myths and misconceptions to reveal the key driving forces? What are the industry trends that align with this transformation? Is it the explosion of digital touchpoints in retail, the reduced risk taking by investment banks, or the ascent of passive funds in asset management? How do we develop concrete use cases from idea generation to production? How do we engineer systems to make accurate predictions, offer recommendations to clients, or analyse unstructured news data? How do we build a successful data-driven organisation? What are the key pitfalls to avoid? Is it about culture, data governance, or management vision? What are the risks specific to developing AI technologies? Can we humans understand and explain what the machines produce for us? Can we trust their predictions or actions? What is the role of alternative data in all this? How can we put it to use for augmented insight? What are the problems that AI is well equipped to solve? Is it all about neural networks and deep learning, as we regularly hear in the popular press? How do we understand human language, a task so important to the financial analyst?  The book is packed with concrete examples from the various disciplines of finance. Interested readers will also develop a deep understanding of AI algorithms - presented in plain English - and learn how to solve the most challenging problems. But first and foremost, it is a practical book that equips finance executives with everything they need to understand this transformation and to become agents of change themselves.

Artificial Intelligence for Asset Management and Investment

Author : Al Naqvi
File Size : 80.17 MB
Format : PDF, Docs
Download : 820
Read : 974
Download »
Make AI technology the backbone of your organization to compete in the Fintech era The rise of artificial intelligence is nothing short of a technological revolution. AI is poised to completely transform asset management and investment banking, yet its current application within the financial sector is limited and fragmented. Existing AI implementations tend to solve very narrow business issues, rather than serving as a powerful tech framework for next-generation finance. Artificial Intelligence for Asset Management and Investment provides a strategic viewpoint on how AI can be comprehensively integrated within investment finance, leading to evolved performance in compliance, management, customer service, and beyond. No other book on the market takes such a wide-ranging approach to using AI in asset management. With this guide, you’ll be able to build an asset management firm from the ground up—or revolutionize your existing firm—using artificial intelligence as the cornerstone and foundation. This is a must, because AI is quickly growing to be the single competitive factor for financial firms. With better AI comes better results. If you aren’t integrating AI in the strategic DNA of your firm, you’re at risk of being left behind. See how artificial intelligence can form the cornerstone of an integrated, strategic asset management framework Learn how to build AI into your organization to remain competitive in the world of Fintech Go beyond siloed AI implementations to reap even greater benefits Understand and overcome the governance and leadership challenges inherent in AI strategy Until now, it has been prohibitively difficult to map the high-tech world of AI onto complex and ever-changing financial markets. Artificial Intelligence for Asset Management and Investment makes this difficulty a thing of the past, providing you with a professional and accessible framework for setting up and running artificial intelligence in your financial operations.

Artificial Intelligence in Financial Markets

Author : Christian L. Dunis
File Size : 82.63 MB
Format : PDF, ePub, Docs
Download : 417
Read : 547
Download »
As technology advancement has increased, so to have computational applications for forecasting, modelling and trading financial markets and information, and practitioners are finding ever more complex solutions to financial challenges. Neural networking is a highly effective, trainable algorithmic approach which emulates certain aspects of human brain functions, and is used extensively in financial forecasting allowing for quick investment decision making. This book presents the most cutting-edge artificial intelligence (AI)/neural networking applications for markets, assets and other areas of finance. Split into four sections, the book first explores time series analysis for forecasting and trading across a range of assets, including derivatives, exchange traded funds, debt and equity instruments. This section will focus on pattern recognition, market timing models, forecasting and trading of financial time series. Section II provides insights into macro and microeconomics and how AI techniques could be used to better understand and predict economic variables. Section III focuses on corporate finance and credit analysis providing an insight into corporate structures and credit, and establishing a relationship between financial statement analysis and the influence of various financial scenarios. Section IV focuses on portfolio management, exploring applications for portfolio theory, asset allocation and optimization. This book also provides some of the latest research in the field of artificial intelligence and finance, and provides in-depth analysis and highly applicable tools and techniques for practitioners and researchers in this field.

Artificial Intelligence for Audit Forensic Accounting and Valuation

Author : Al Naqvi
File Size : 23.54 MB
Format : PDF, ePub, Mobi
Download : 672
Read : 854
Download »
Strategically integrate AI into your organization to compete in the tech era The rise of artificial intelligence is nothing short of a technological revolution. AI is poised to completely transform accounting and auditing professions, yet its current application within these areas is limited and fragmented. Existing AI implementations tend to solve very narrow business issues, rather than serving as a powerful tech framework for next-generation accounting. Artificial Intelligence for Audit, Forensic Accounting, and Valuation provides a strategic viewpoint on how AI can be comprehensively integrated within audit management, leading to better automated models, forensic accounting, and beyond. No other book on the market takes such a wide-ranging approach to using AI in audit and accounting. With this guide, you’ll be able to build an innovative, automated accounting strategy, using artificial intelligence as the cornerstone and foundation. This is a must, because AI is quickly growing to be the single competitive factor for audit and accounting firms. With better AI comes better results. If you aren’t integrating AI and automation in the strategic DNA of your business, you’re at risk of being left behind. See how artificial intelligence can form the cornerstone of integrated, automated audit and accounting services Learn how to build AI into your organization to remain competitive in the era of automation Go beyond siloed AI implementations to modernize and deliver results across the organization Understand and overcome the governance and leadership challenges inherent in AI strategy Accounting and auditing firms need a comprehensive framework for intelligent, automation-centric modernization. Artificial Intelligence for Audit, Forensic Accounting, and Valuation delivers just that—a plan to evolve legacy firms by building firmwide AI capabilities.

The Impact of Artificial Intelligence on Workforce Management within the Banking and Finance Industry

Author : Sofia Papadopoulou
File Size : 44.16 MB
Format : PDF, Kindle
Download : 643
Read : 1095
Download »
Master's Thesis from the year 2020 in the subject Business economics - Banking, Stock Exchanges, Insurance, Accounting, grade: 1,6, University of applied sciences Frankfurt a. M., language: English, abstract: The purpose and objective of this thesis is to examine the degree of impact WFM is facing due to implementation of AI-based tools within the banking and finance industry. To do this the author will select and classify under the chapter ‘Literature Review’ how, in which departments, and to what degree, banks and other financial institutions have implemented AI tools within their organization. Secondly, the author will conduct interviews with executive leaders as well as with AI researchers and experts, and analyze the data received. For this study, the author focuses on AI’s impact on WFM within the banking and finance industry. The purpose of the following questions is to refine the present knowledge gap within the banking and finance industry regarding the WFM impact of AI. The author will emphasize via a literature review and interviews exactly how AI-based technology tools have been implemented in the banking and finance industry. To do so, three research questions have been chosen and will be further analyzed throughout this study paper. The first question focuses on WFM and HR teams. It predicts how many people and what kind of qualifications will be deployed. As well as where and when they will be deployed. There are many consequences of banks and other financial institutions implementing more AI technology. In his book, Competing in the Age of AI, Iansiti and Lakhani mention that it is critical for leaders to understand the choice of model along with “navigating the ethics of digital scale”. The author emphasizes that leaders must be able to build a strong organization of safety, security and sustainability. Firms spend billions of dollars on new AI related technologies and innovations. Despite this, banks and other financial institutions face three main issues. The first challenge is an outdated operating model. The second challenge is the lack of a fitting talent strategy. Both challenges are interconnected to each other. Likewise, as a third challenge, Workforce Management (WFM), the core process that boosts performance levels and competency for an organization, has been reformed and disrupted by the introduction of AI.

Blockchain Artificial Intelligence and Financial Services

Author : Sean Stein Smith
File Size : 29.62 MB
Format : PDF, ePub, Mobi
Download : 798
Read : 1333
Download »
Blockchain technology and artificial intelligence (AI) have the potential to transform how the accounting and financial services industries engage with the business, stakeholder and consumer communities. Presenting a blend of technical analysis with current and future applications, this book provides professionals with an action plan to embrace and move forward with these new technologies in financial and accounting organizations. It is written in a conversational style that is unbiased and objective, replacing jargon and technical details with real world case examples.

Knowledge based Systems for Financial Executives

Author : Carl Fink
File Size : 87.65 MB
Format : PDF, Kindle
Download : 946
Read : 729
Download »

The Impact of Artificial Intelligence on Governance Economics and Finance Volume I

Author : Sezer Bozkuş Kahyaoğlu
File Size : 89.96 MB
Format : PDF, Mobi
Download : 822
Read : 478
Download »
The book discusses the effects of artificial intelligence in terms of economics and finance. In particular, the book focuses on the effects of the change in the structure of financial markets, institutions and central banks, along with digitalization analyzed based on fintech ecosystems. In addition to finance sectors, other sectors, such as health, logistics, and industry 4.0, all of which are undergoing an artificial intelligence induced rapid transformation, are addressed in this book. Readers will receive an understanding of an integrated approach towards the use of artificial intelligence across various industries and disciplines with a vision to address the strategic issues and priorities in the dynamic business environment in order to facilitate decision-making processes. Economists, board members of central banks, bankers, financial analysts, regulatory authorities, accounting and finance professionals, chief executive officers, chief audit officers and chief financial officers, chief financial officers, as well as business and management academic researchers, will benefit from reading this book.

Economics and Law of Artificial Intelligence

Author : Georgios I. Zekos
File Size : 66.27 MB
Format : PDF
Download : 494
Read : 929
Download »
This book presents a comprehensive analysis of the alterations and problems caused by new technologies in all fields of the global digital economy. The impact of artificial intelligence (AI) not only on law but also on economics is examined. In the first part, the economics of AI are explored, including topics such as e-globalization and digital economy, corporate governance, risk management, and risk development, followed by a quantitative econometric analysis which utilizes regressions stipulating the scale of the impact. In the second part, the author presents the law of AI, covering topics such as the law of electronic technology, legal issues, AI and intellectual property rights, and legalizing AI. Case studies from different countries are presented, as well as a specific analysis of international law and common law. This book is a must-read for scholars and students of law, economics, and business, as well as policy-makers and practitioners, interested in a better understanding of legal and economic aspects and issues of AI and how to deal with them. .

Applications of Artificial Intelligence in Business and Finance

Author : Vikas Garg
File Size : 57.21 MB
Format : PDF, Kindle
Download : 152
Read : 1270
Download »
As transactions and other business functions move online and grow more popular every year, the finance and banking industries face increasingly complex data management and identity theft and fraud issues. AI can bring many financial and business functions to the next level, as systems using deep learning technologies are able to analyze patterns and spot suspicious behavior and potential fraud. In this volume, the focus is on the application of artificial intelligence in finance, business, and related areas. The book presents a selection of chapters presenting cutting-edge research on current business practices in finance and management. Topics cover the use of AI in e-commerce systems, financial services, fraud prevention, identifying loan-eligible customers, online business, Facebook social commerce, insurance industry, online marketing, and more.

Artificial Intelligence in Finance Investing

Author : Robert R. Trippi
File Size : 66.5 MB
Format : PDF, Mobi
Download : 905
Read : 718
Download »
In Artificial Intelligence in Finance and Investing, authors Robert Trippi and Jae Lee explain this fascinating new technology in terms that portfolio managers, institutional investors, investment analysis, and information systems professionals can understand. Using real-life examples and a practical approach, this rare and readable volume discusses the entire field of artificial intelligence of relevance to investing, so that readers can realize the benefits and evaluate the features of existing or proposed systems, and ultimately construct their own systems. Topics include using Expert Systems for Asset Allocation, Timing Decisions, Pattern Recognition, and Risk Assessment; overview of Popular Knowledge-Based Systems; construction of Synergistic Rule Bases for Securities Selection; incorporating the Markowitz Portfolio Optimization Model into Knowledge-Based Systems; Bayesian Theory and Fuzzy Logic System Components; Machine Learning in Portfolio Selection and Investment Timing, including Pattern-Based Learning and Fenetic Algorithms; and Neural Network-Based Systems. To illustrate the concepts presented in the book, the authors conclude with a valuable practice session and analysis of a typical knowledge-based system for investment management, K-FOLIO. For those who want to stay on the cutting edge of the "application" revolution, Artificial Intelligence in Finance and Investing offers a pragmatic introduction to the use of knowledge-based systems in securities selection and portfolio management.

The Essentials of Machine Learning in Finance and Accounting

Author : Mohammad Zoynul Abedin
File Size : 83.2 MB
Format : PDF, ePub
Download : 146
Read : 494
Download »
Th­is book introduces machine learning in finance and illustrates how we can use computational tools in numerical finance in real-world context. ­These computational techniques are particularly useful in financial risk management, corporate bankruptcy prediction, stock price prediction, and portfolio management. ­The book also offers practical and managerial implications of financial and managerial decision support systems and how these systems capture vast amount of financial data. Business risk and uncertainty are two of the toughest challenges in the financial industry. Th­is book will be a useful guide to the use of machine learning in forecasting, modeling, trading, risk management, economics, credit risk, and portfolio management.

The Handbook of Artificial Intelligence in Accounting Banking Finance Management and Marketing

Author : Anique Quershi
File Size : 28.65 MB
Format : PDF, ePub, Docs
Download : 283
Read : 190
Download »
Artificial intelligence (AI) is the field of computer science that studies how machines can be made to act intelligently, as a substitute for some routine and not-so routine activities. This book allows business professionals to keep abreast of AI technology and shows how AI can be used to achieve: lower costs; increased productivity; revenue maximization; and greater use of all company resources.

Business Forecasting

Author : Michael Gilliland
File Size : 22.84 MB
Format : PDF
Download : 384
Read : 323
Download »
Discover the role of machine learning and artificial intelligence in business forecasting from some of the brightest minds in the field In Business Forecasting: The Emerging Role of Artificial Intelligence and Machine Learning accomplished authors Michael Gilliland, Len Tashman, and Udo Sglavo deliver relevant and timely insights from some of the most important and influential authors in the field of forecasting. You'll learn about the role played by machine learning and AI in the forecasting process and discover brand-new research, case studies, and thoughtful discussions covering an array of practical topics. The book offers multiple perspectives on issues like monitoring forecast performance, forecasting process, communication and accountability for forecasts, and the use of big data in forecasting. You will find: Discussions on deep learning in forecasting, including current trends and challenges Explorations of neural network-based forecasting strategies A treatment of the future of artificial intelligence in business forecasting Analyses of forecasting methods, including modeling, selection, and monitoring In addition to the Foreword by renowned researchers Spyros Makridakis and Fotios Petropoulos, the book also includes 16 "opinion/editorial" Afterwords by a diverse range of top academics, consultants, vendors, and industry practitioners, each providing their own unique vision of the issues, current state, and future direction of business forecasting. Perfect for financial controllers, chief financial officers, business analysts, forecast analysts, and demand planners, Business Forecasting will also earn a place in the libraries of other executives and managers who seek a one-stop resource to help them critically assess and improve their own organization's forecasting efforts.

The AI Book

Author : Ivana Bartoletti
File Size : 52.86 MB
Format : PDF, Kindle
Download : 320
Read : 195
Download »
Written by prominent thought leaders in the global fintech space, The AI Book aggregates diverse expertise into a single, informative volume and explains what artifical intelligence really means and how it can be used across financial services today. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: · Understanding the AI Portfolio: from machine learning to chatbots, to natural language processing (NLP); a deep dive into the Machine Intelligence Landscape; essentials on core technologies, rethinking enterprise, rethinking industries, rethinking humans; quantum computing and next-generation AI · AI experimentation and embedded usage, and the change in business model, value proposition, organisation, customer and co-worker experiences in today’s Financial Services Industry · The future state of financial services and capital markets – what’s next for the real-world implementation of AITech? · The innovating customer – users are not waiting for the financial services industry to work out how AI can re-shape their sector, profitability and competitiveness · Boardroom issues created and magnified by AI trends, including conduct, regulation & oversight in an algo-driven world, cybersecurity, diversity & inclusion, data privacy, the ‘unbundled corporation’ & the future of work, social responsibility, sustainability, and the new leadership imperatives · Ethical considerations of deploying Al solutions and why explainable Al is so important

Artificial Intelligence in Financial Services and Banking Industry

Author : Dr. V.V.L.N. Sastry
File Size : 50.72 MB
Format : PDF, ePub, Mobi
Download : 112
Read : 204
Download »
In the last couple of years, the finance and banking sectors have increasingly deployed and implemented Artificial Intelligence (AI) technologies. AI and machine learning are being rapidly adopted for a range of applications for front-end and back end processes to both business and financial management operations. Thus, it is quite significant to consider the financial stability repercussions of such uses. Since AI is relatively new, the data on the usage is largely unavailable, any analysis may be necessarily considered Preliminary1 . Some of the current and potential use cases of AI and machine learning in the finance sector include the following.  Institutions use AI and machine learning methods to optimize scarce capital, back-test models, and analyze the market impact of trading large positions.  Financial institutions and vendors use AI and machine learning techniques to evaluate credit quality for market and price insurance contracts, and to automate client interaction.  Brokers, hedge funds, and other firms are using AI and machine learning to find pointers for higher (and uncorrelated) returns to optimize trading execution.  Private and public sector institutions use these technologies for data quality assessment, surveillance, regulatory compliance, and fraud detection. This book seeks to map the use of AI in current state of affairs in the banking and financial sector. By doing so, it explores:  The present uses of AI in banking and finance and its narrative across the globe.

The Artificial Intelligence Handbook

Author : Joel G. Siegel
File Size : 88.6 MB
Format : PDF, Mobi
Download : 272
Read : 1293
Download »
The purpose of this book is to help business professionals understand artificial intelligence software and how to make practical use of it. The authors provide a complete overview of expert systems and neural networks. Applications in a variety of discipline are included such as: banking, insurance, investments, accounting, law, marketing, and manufacturing.

Machine Learning Applications Using Python

Author : Puneet Mathur
File Size : 62.96 MB
Format : PDF, Kindle
Download : 283
Read : 751
Download »
Gain practical skills in machine learning for finance, healthcare, and retail. This book uses a hands-on approach by providing case studies from each of these domains: you’ll see examples that demonstrate how to use machine learning as a tool for business enhancement. As a domain expert, you will not only discover how machine learning is used in finance, healthcare, and retail, but also work through practical case studies where machine learning has been implemented. Machine Learning Applications Using Python is divided into three sections, one for each of the domains (healthcare, finance, and retail). Each section starts with an overview of machine learning and key technological advancements in that domain. You’ll then learn more by using case studies on how organizations are changing the game in their chosen markets. This book has practical case studies with Python code and domain-specific innovative ideas for monetizing machine learning. What You Will Learn Discover applied machine learning processes and principles Implement machine learning in areas of healthcare, finance, and retail Avoid the pitfalls of implementing applied machine learning Build Python machine learning examples in the three subject areas Who This Book Is For Data scientists and machine learning professionals.

Artificial Intelligence for Asset Management and Investment

Author : Al Naqvi
File Size : 61.28 MB
Format : PDF, Docs
Download : 108
Read : 944
Download »
Make AI technology the backbone of your organization to compete in the Fintech era The rise of artificial intelligence is nothing short of a technological revolution. AI is poised to completely transform asset management and investment banking, yet its current application within the financial sector is limited and fragmented. Existing AI implementations tend to solve very narrow business issues, rather than serving as a powerful tech framework for next-generation finance. Artificial Intelligence for Asset Management and Investment provides a strategic viewpoint on how AI can be comprehensively integrated within investment finance, leading to evolved performance in compliance, management, customer service, and beyond. No other book on the market takes such a wide-ranging approach to using AI in asset management. With this guide, you’ll be able to build an asset management firm from the ground up—or revolutionize your existing firm—using artificial intelligence as the cornerstone and foundation. This is a must, because AI is quickly growing to be the single competitive factor for financial firms. With better AI comes better results. If you aren’t integrating AI in the strategic DNA of your firm, you’re at risk of being left behind. See how artificial intelligence can form the cornerstone of an integrated, strategic asset management framework Learn how to build AI into your organization to remain competitive in the world of Fintech Go beyond siloed AI implementations to reap even greater benefits Understand and overcome the governance and leadership challenges inherent in AI strategy Until now, it has been prohibitively difficult to map the high-tech world of AI onto complex and ever-changing financial markets. Artificial Intelligence for Asset Management and Investment makes this difficulty a thing of the past, providing you with a professional and accessible framework for setting up and running artificial intelligence in your financial operations.

Machine Learning for Finance

Author : Saurav Singla
File Size : 49.83 MB
Format : PDF, Mobi
Download : 548
Read : 1184
Download »
Understand the essentials of Machine Learning and its impact in financial sector KEY FEATURES ●Explore the spectrum of machine learning and its usage. ●Understand the NLP and Computer Vision and their use cases. ●Understand the Neural Network, CNN, RNN and their applications. ● Understand the Reinforcement Learning and their applications. ●Learn the rising application of Machine Learning in the Finance sector. ●Exposure to data mining, data visualization and data analytics. DESCRIPTION The fields of machining adapting, profound learning, and computerized reasoning are quickly extending and are probably going to keep on doing as such for a long time to come. There are many main impetuses for this, as quickly caught in this review. Now and again, the advancement has been emotional, opening new ways to deal with long-standing innovation challenges, for example, progresses in PC vision and picture investigation. The book demonstrates how to solve some of the most common issues in the financial industry. The book addresses real-life problems faced by practitioners on a daily basis. The book explains how machine learning works on structured data, text, and images. You will cover the exploration of Naïve Bayes, Normal Distribution, Clustering with Gaussian process, advanced neural network, sequence modeling, and reinforcement learning. Later chapters will discuss machine learning use cases in the finance sector and the implications of deep learning. The book ends with traditional machine learning algorithms. Machine Learning has become very important in the finance industry, which is mostly used for better risk management and risk analysis. Better analysis leads to better decisions which lead to an increase in profit for financial institutions. Machine Learning to empower fintech to make massive profits by optimizing processes, maximizing efficiency, and increasing profitability. WHAT WILL YOU LEARN ● You will grasp the most relevant techniques of Machine Learning for everyday use. ● You will be confident in building and implementing ML algorithms. ● Familiarize the adoption of Machine Learning for your business need. ● Discover more advanced concepts applied in banking and other sectors today. ● Build mastery skillset in designing smart AI applications including NLP, Computer Vision and Deep Learning. WHO THIS BOOK IS FOR Data Scientist, Machine Learning Engineers and Individuals who want to adopt machine learning in the financial domain. Practitioners are working in banks, asset management, hedge funds or working the first time in the finance domain. Individuals who want to learn about applications of machine learning in finance or individuals entering the fintech domain. TABLE OF CONTENTS 1.Introduction 2.Naive Bayes, Normal Distribution and Automatic Clustering Processes 3.Machine Learning for Data Structuring 4.Parsing Data Using NLP 5.Computer Vision 6.Neural Network, GBM and Gradient Descent 7.Sequence Modeling 8.Reinforcement Learning For Financial Markets 9.Finance Use Cases 10.Impact of Machine Learning on Fintech 11.Machine Learning in Finance 12.eKYC and Anti-Fraud Policy 13.Uses of Data Mining and Data Visualization 14.Advantages and Disadvantages of Machine Learning 15.Applications of Machine Learning in Other Industries 16.Ethical considerations in Artificial Intelligence 17.Artificial Intelligence in Banking 18.Common Machine Learning Algorithms 19.Frequently Asked Questions