Search results for: automotive-battery-technology-springerbriefs-in-applied-sciences-and-technology

Automotive Battery Technology

Author : Alexander Thaler
File Size : 54.57 MB
Format : PDF
Download : 192
Read : 945
Download »
The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

Managing Electric Vehicle Power

Author : Sam Davis
File Size : 85.34 MB
Format : PDF, ePub, Mobi
Download : 780
Read : 178
Download »
Power management involves all the power consumed in an electric vehicle (EV), so it impacts the vehicle's performance, safety, and driving range. To provide these vehicle characteristics, power management: Ensures that the proper power, voltage, and current are applied to each electronic circuit. Ensures that there is isolation between low-voltage and highvoltage (HV) circuits. Offers power circuit protection against electrical disturbances that can affect internal or external circuits. Managing Electric Vehicle Power provides complete coverage for understanding how best to utilize the primary power source across all the EV's Electric Control Units. Readers will also be introduced to the qualification standards of the Automotive Electronics Council (AEC). AEC standards are a 'one-time' qualification that typically takes place at the end of the development cycle.

Energy Efficient Non Road Hybrid Electric Vehicles

Author : Johannes Unger
File Size : 74.80 MB
Format : PDF, Docs
Download : 600
Read : 294
Download »
This book analyzes the main problems in the real-time control of parallel hybrid electric powertrains in non-road applications that work in continuous high dynamic operation. It also provides practical insights into maximizing the energy efficiency and drivability of such powertrains. It introduces an energy-management control structure, which considers all the physical powertrain constraints and uses novel methodologies to predict the future load requirements to optimize the controller output in terms of the entire work cycle of a non-road vehicle. The load prediction includes a methodology for short-term loads as well as cycle detection methodology for an entire load cycle. In this way, the energy efficiency can be maximized, and fuel consumption and exhaust emissions simultaneously reduced. Readers gain deep insights into the topics that need to be considered in designing an energy and battery management system for non-road vehicles. It also becomes clear that only a combination of management systems can significantly increase the performance of a controller.

Prussian Blue Based Batteries

Author : María José Piernas Muñoz
File Size : 29.68 MB
Format : PDF, Docs
Download : 742
Read : 665
Download »
This book reviews the structure and composition of Prussian Blue materials. It presents the state-of-the-art of their application to metal-ion batteries, highlighting the benefits derived from the integration of electrochemical energy storage with clean energies. It concludes with future perspectives including prototyping and large-scale production.

The Green Energy Ship Concept

Author : Max F. Platzer
File Size : 67.57 MB
Format : PDF, Kindle
Download : 906
Read : 506
Download »
This groundbreaking book aims to show that technology currently exists to build and operate large autonomous sailing ships equipped with hydrokinetic turbines and electrolysers that could operate in high-wind ocean areas. This technology would enable seawater to be converted into storable hydrogen, thereby tapping into an inexhaustible energy reservoir sufficient for the transition to an emission-free global economy. The book is presented in two parts. Part one presents a broad look at possible solutions to the climate change challenge and provides an overview of current approaches. Part two introduces 12 specific technologies that could enable the green energy ship concept.

Self powered Energy Harvesting Systems for Health Supervising Applications

Author : Albert Álvarez-Carulla
File Size : 42.95 MB
Format : PDF, Docs
Download : 717
Read : 1086
Download »
This book highlights the current and recent state-of-the-art developments in energy harvesting systems for health supervising applications. It explores the exciting potential of energy harvesting as a crosscutting field of research to intersect with other areas to envisage new products, solutions, and applications. Among all these new opportunities for synergy, there is a research area that fully matches the features offered by energy harvesting with its power supply's main needs- health supervising (HS), which consists of monitoring the health or operating conditions of anything, such as structures, buildings, public health, environment, etc. The book covers the hand in hand evolution towards a new paradigm: truly self-powered devices based on a single transducer acting as a sensor and as power source simultaneously and efficiently. This evolution is illustrated by the concept and implementation of novel state-of-the-art architecture for self-powered energy harvesting systems for applications that range from structural health monitoring to point-of-care medical devices.

Energy Efficient Non Road Hybrid Electric Vehicles

Author : Johannes Unger
File Size : 27.71 MB
Format : PDF, Kindle
Download : 182
Read : 761
Download »
This book analyzes the main problems in the real-time control of parallel hybrid electric powertrains in non-road applications that work in continuous high dynamic operation. It also provides practical insights into maximizing the energy efficiency and drivability of such powertrains. It introduces an energy-management control structure, which considers all the physical powertrain constraints and uses novel methodologies to predict the future load requirements to optimize the controller output in terms of the entire work cycle of a non-road vehicle. The load prediction includes a methodology for short-term loads as well as cycle detection methodology for an entire load cycle. In this way, the energy efficiency can be maximized, and fuel consumption and exhaust emissions simultaneously reduced. Readers gain deep insights into the topics that need to be considered in designing an energy and battery management system for non-road vehicles. It also becomes clear that only a combination of management systems can significantly increase the performance of a controller.

Mitigation of Negative Impedance Instabilities in DC Distribution Systems

Author : Deepak Kumar Fulwani
File Size : 28.97 MB
Format : PDF, ePub, Mobi
Download : 393
Read : 576
Download »
This book focuses on the mitigation of the destabilizing effects introduced by constant power loads (CPLs) in various non-isolated DC/DC converters and island DC microgrids using a robust non-linear sliding mode control (SMC) approach. This book validates theoretical concepts using real-time simulation studies and hardware implementations. Novel sliding mode controllers are proposed to mitigate negative impedance instabilities in DC/DC boost, buck, buck-boost, bidirectional buck-boost converters, and islanded DC microgrids. In each case, the condition for the large-signal stability of the converter feeding a CPL is established. An SMC-based nonlinear control scheme for an islanded DC microgrid feeding CPL dominated load is proposed so as to mitigate the destabilizing effect of CPL and to ensure system stability under various operating conditions. A limit on CPL power is also established to ensure system stability. For all proposed solutions, simulation studies and hardware implementations are provided to validate the effectiveness of the proposed sliding mode controllers.

Vehicle Electrification

Author : Igor Bolvashenkov
File Size : 40.70 MB
Format : PDF
Download : 478
Read : 660
Download »
This book provides a comprehensive assessment and presentation of various feasible application of electric propulsion system, considering their weight, volume, reliability, and fault tolerance. The results of feasibility analysis can be used today or in the near future for development of electric propulsion system for the ships, planes, helicopters, and spacecrafts. To solve the above task, new theoretical approaches are applied, including combined random process methods, the Lz-transform technique for multistate systems, and statistical data processing.

Doped Ceria Electrolytes

Author : Luca Spiridigliozzi
File Size : 32.6 MB
Format : PDF, Docs
Download : 727
Read : 920
Download »
This book provides an overview of fuel cell technology and, in particular, of Solid Oxide Electrolysis Cells (SOFCs). Each chapter highlights the effects of different synthesis parameters and/or adopted sintering method, clarifying both advantages and disadvantages pointed out by different experimental campaigns. The book focuses on Doped-Ceria Electrolytes, presenting an engineered production process of GDC/SDC electrolytes by using a combination of wet chemical synthesis and/or alternative sintering techniques, capable of enhancing electrolytes microstructural features and electrical properties at reduced temperature and time. The author proposes useful guidelines to produce dense and high-preforming ceria-based electrolytes for IT-SOFCs.