Search results for: big-data-and-social-science

Big Data and Social Science

Author : Ian Foster
File Size : 39.84 MB
Format : PDF, Mobi
Download : 648
Read : 588
Download »
Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.

Big Data and Social Science

Author : Ian Foster
File Size : 56.82 MB
Format : PDF
Download : 429
Read : 936
Download »
Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.

Big Data Research for Social Sciences and Social Impact

Author : Miltiadis D. Lytras
File Size : 87.83 MB
Format : PDF, ePub, Mobi
Download : 344
Read : 1163
Download »
A new era of innovation is enabled by the integration of social sciences and information systems research. In this context, the adoption of Big Data and analytics technology brings new insight to the social sciences. It also delivers new, flexible responses to crucial social problems and challenges. We are proud to deliver this edited volume on the social impact of big data research. It is one of the first initiatives worldwide analyzing of the impact of this kind of research on individuals and social issues. The organization of the relevant debate is arranged around three pillars: Section A: Big Data Research for Social Impact: • Big Data and Their Social Impact; • (Smart) Citizens from Data Providers to Decision-Makers; • Towards Sustainable Development of Online Communities; • Sentiment from Online Social Networks; • Big Data for Innovation. Section B. Techniques and Methods for Big Data driven research for Social Sciences and Social Impact: • Opinion Mining on Social Media; • Sentiment Analysis of User Preferences; • Sustainable Urban Communities; • Gender Based Check-In Behavior by Using Social Media Big Data; • Web Data-Mining Techniques; • Semantic Network Analysis of Legacy News Media Perception. Section C. Big Data Research Strategies: • Skill Needs for Early Career Researchers—A Text Mining Approach; • Pattern Recognition through Bibliometric Analysis; • Assessing an Organization’s Readiness to Adopt Big Data; • Machine Learning for Predicting Performance; • Analyzing Online Reviews Using Text Mining; • Context–Problem Network and Quantitative Method of Patent Analysis. Complementary social and technological factors including: • Big Social Networks on Sustainable Economic Development; Business Intelligence.

Computational Social Science in the Age of Big Data

Author : Martin Welker
File Size : 69.35 MB
Format : PDF, ePub
Download : 292
Read : 461
Download »
Der Sammelband Computational Social Science in the Age of Big Data beschäftigt sich mit Konzepten, Methoden, Tools und Anwendungen (automatisierter) datengetriebener Forschung mit sozialwissenschaftlichem Hintergrund. Der Fokus des Bandes liegt auf der Etablierung der Computational Social Science (CSS) als aufkommendes Forschungs- und Anwendungsfeld. Es werden Beiträge international namhafter Autoren präsentiert, die forschungs- und praxisrelevante Themen dieses Bereiches besprechen. Die Herausgeber forcieren dabei einen interdisziplinären Zugang zum Feld, der sowohl Online-Forschern aus der Wissenschaft wie auch aus der angewandten Marktforschung einen Einstieg bietet.

Big Data in Computational Social Science and Humanities

Author : Shu-Heng Chen
File Size : 66.50 MB
Format : PDF, ePub
Download : 795
Read : 609
Download »
This edited volume focuses on big data implications for computational social science and humanities from management to usage. The first part of the book covers geographic data, text corpus data, and social media data, and exemplifies their concrete applications in a wide range of fields including anthropology, economics, finance, geography, history, linguistics, political science, psychology, public health, and mass communications. The second part of the book provides a panoramic view of the development of big data in the fields of computational social sciences and humanities. The following questions are addressed: why is there a need for novel data governance for this new type of data?, why is big data important for social scientists?, and how will it revolutionize the way social scientists conduct research? With the advent of the information age and technologies such as Web 2.0, ubiquitous computing, wearable devices, and the Internet of Things, digital society has fundamentally changed what we now know as "data", the very use of this data, and what we now call "knowledge". Big data has become the standard in social sciences, and has made these sciences more computational. Big Data in Computational Social Science and Humanities will appeal to graduate students and researchers working in the many subfields of the social sciences and humanities.

Social Research Methods

Author : Sigmund Grønmo
File Size : 49.1 MB
Format : PDF, Kindle
Download : 710
Read : 153
Download »
Structured around one of the concepts students struggle with the most—the research question—this book begins with how to understand the role of good questions before demonstrating how questions underpin good research designs and how social research can be framed as asking and answering questions. Perfect for undergraduate students new to methods, it teaches students how qualitative, quantitative, and mixed methods research can be used to answer these questions. "An incredibly resourceful book that contains a forensic insight into social research methods, offering the full range of contemporary approaches. Students will find particular value in the accessibility and detail of the text. Each chapter provides a set of learning outcomes, study questions and further reading." - Dr Ruth McAreavey, Newcastle University Supported by a website that maps online resources to key stages of the learning process, it helps students: - Understand the scientific method - Learn the vocabulary of social science research - Plan and design research - Practice with and interpret data - Explore social science literature and improve assignments with good citations - Improve critical thinking. - Extensive visualizations, overviews, examples, exercises, and other learning features, make this the perfect introductory text to build confidence and best practice around research methods.

Big Data Little Data No Data

Author : Christine L. Borgman
File Size : 65.15 MB
Format : PDF, ePub, Mobi
Download : 801
Read : 511
Download »
An examination of the uses of data within a changing knowledge infrastructure, offering analysis and case studies from the sciences, social sciences, and humanities. “Big Data” is on the covers of Science, Nature, the Economist, and Wired magazines, on the front pages of the Wall Street Journal and the New York Times. But despite the media hyperbole, as Christine Borgman points out in this examination of data and scholarly research, having the right data is usually better than having more data; little data can be just as valuable as big data. In many cases, there are no data—because relevant data don't exist, cannot be found, or are not available. Moreover, data sharing is difficult, incentives to do so are minimal, and data practices vary widely across disciplines. Borgman, an often-cited authority on scholarly communication, argues that data have no value or meaning in isolation; they exist within a knowledge infrastructure—an ecology of people, practices, technologies, institutions, material objects, and relationships. After laying out the premises of her investigation—six “provocations” meant to inspire discussion about the uses of data in scholarship—Borgman offers case studies of data practices in the sciences, the social sciences, and the humanities, and then considers the implications of her findings for scholarly practice and research policy. To manage and exploit data over the long term, Borgman argues, requires massive investment in knowledge infrastructures; at stake is the future of scholarship.

Handbook of Computational Social Science Volume 1

Author : Uwe Engel
File Size : 80.18 MB
Format : PDF, Mobi
Download : 466
Read : 664
Download »
The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches. The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. This first volume focuses on the scope of computational social science, ethics, and case studies. It covers a range of key issues, including open science, formal modeling, and the social and behavioral sciences. This volume explores major debates, introduces digital trace data, reviews the changing survey landscape, and presents novel examples of computational social science research on sensing social interaction, social robots, bots, sentiment, manipulation, and extremism in social media. The volume not only makes major contributions to the consolidation of this growing research field but also encourages growth in new directions. With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates, and researchers engaging with computational methods across the social sciences, as well as those within the scientifi c and engineering sectors.

Big Data Analytics Systems Algorithms Applications

Author : C.S.R. Prabhu
File Size : 31.31 MB
Format : PDF, ePub, Mobi
Download : 383
Read : 1035
Download »
This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.

The Routledge Social Science Handbook of AI

Author : Anthony Elliott
File Size : 55.47 MB
Format : PDF, Kindle
Download : 946
Read : 1293
Download »
The Routledge Social Science Handbook of AI is a landmark volume providing students and teachers with a comprehensive and accessible guide to the major topics and trends of research in the social sciences of artificial intelligence (AI), as well as surveying how the digital revolution – from supercomputers and social media to advanced automation and robotics – is transforming society, culture, politics and economy. The Handbook provides representative coverage of the full range of social science engagements with the AI revolution, from employment and jobs to education and new digital skills to automated technologies of military warfare and the future of ethics. The reference work is introduced by editor Anthony Elliott, who addresses the question of relationship of social sciences to artificial intelligence, and who surveys various convergences and divergences between contemporary social theory and the digital revolution. The Handbook is exceptionally wide-ranging in span, covering topics all the way from AI technologies in everyday life to single-purpose robots throughout home and work life, and from the mainstreaming of human-machine interfaces to the latest advances in AI, such as the ability to mimic (and improve on) many aspects of human brain function. A unique integration of social science on the one hand and new technologies of artificial intelligence on the other, this Handbook offers readers new ways of understanding the rise of AI and its associated global transformations. Written in a clear and direct style, the Handbook will appeal to a wide undergraduate audience.