Search results for: big-data-fundamentals

Big Data Fundamentals

Author : Thomas Erl
File Size : 83.49 MB
Format : PDF, Docs
Download : 301
Read : 502
Download »
Big Data Science Fundamentals offers a comprehensive, easy-to-understand, and up-to-date understanding of Big Data for all business professionals and technologists. Leading enterprise technology author Thomas Erl introduces key Big Data concepts, theory, terminology, technologies, key analysis/analytics techniques, and more - all logically organized, presented in plain English, and supported by easy-to-understand diagrams and case study examples. Erl provides a uniquely valuable methodology for Big Data analysis, and introduces the underlying analysis techniques and enabling technological constructs that constitute a Big Data solution environment. He presents vendor-neutral guidance on implementing Big Data for competitive advantage; and for successfully integrating Big Data with existing enterprise systems. Coverage includes: Big Data's fundamental concepts and key business/technology drivers "5 V" characteristics of data in Big Data environments: volume, velocity, variety, veracity, and value Types of Big Data: structured, unstructured, semi-structured, and meta-data Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Fundamental types of analysis, analytics, and machine learning Requirements and tools for visualizing big data Adoption and planning: business cases, privacy, security, provenance, performance, governance, and more Big Data technologies, including clusters, NoSQL, distributed and parallel data processing, Hadoop, cloud computing, and storage Big Data analysis and analytics across the full lifecycle And much more

Exam Prep for Big Data Fundamentals Concepts Drivers amp

Author :
File Size : 71.90 MB
Format : PDF, Mobi
Download : 775
Read : 488
Download »

The Fundamentals of Data Science Big Data Deep Learning and Machine Learning What You Need to Know about Data Science and why it Matters

Author : Vlad Sozonov
File Size : 53.82 MB
Format : PDF, Docs
Download : 930
Read : 841
Download »
Data science is no easy term to define. While there are many definitions available that point out its statistical or logical aspects, others focus on its machine learning impacts. Today only, get this Amazon book for just $19.99 for a limited time. Regularly priced at $35.99. The truth is, data science is a process that requires an understanding of multiple fields, methods, techniques, and more. Data science cannot be easily labeled because, when applied, it looks different to each person, business, or organization utilizing it. While the term may not be easy to define, what it is used for, can be used for, and approaches to it can be more easily understood. And that is precisely what this book aims to do. Scroll Up & Click to Buy Now! Here Is A Preview Of What You'll Discover...In this step-by-step book: This book will not only thoroughly go over all the skills, people, and steps involved in data science, it will also look closely at: ● What big data is and how data science came from it. ● How data has evolved, resulting in new methods for understanding it. ● How data science influenced artificial intelligence. ● How data science is used in machine learning and deep learning. ● How data science revolutionizes the way we train machines and set up neural networks. Data science, big data, machine learning, and deep learning tend to intimidate people. Many believe it is too complicated or technology-centered for them to break into these fields. This book is designed to simplify these complex areas in a way that anyone can understand the fundamentals. Whether you are just hearing about data science, are a student studying it in college, or looking to expand your career, this book has something to offer every type of data enthusiast. Order your copy today! Take action right away by purchase this book "The Fundamentals of Data Science: Big Data, Deep Learning, and Machine Learning: What you need to know about data science and why it matters.", for a limited time discount of only $19.99! Hurry Up!! Tags: ● data science quick ● data science strategy ● data science trading ● data science journal ● insight data science ● data science salary ● data science jobs ● data science espanol ● data science case study ● data science beginner guide

Exam Prep for Fundamentals of Big Data Network Analysis

Author :
File Size : 28.80 MB
Format : PDF, Kindle
Download : 805
Read : 689
Download »

Scala Programming for Big Data Analytics

Author : Irfan Elahi
File Size : 79.39 MB
Format : PDF, Mobi
Download : 774
Read : 1158
Download »
Gain the key language concepts and programming techniques of Scala in the context of big data analytics and Apache Spark. The book begins by introducing you to Scala and establishes a firm contextual understanding of why you should learn this language, how it stands in comparison to Java, and how Scala is related to Apache Spark for big data analytics. Next, you’ll set up the Scala environment ready for examining your first Scala programs. This is followed by sections on Scala fundamentals including mutable/immutable variables, the type hierarchy system, control flow expressions and code blocks. The author discusses functions at length and highlights a number of associated concepts such as functional programming and anonymous functions. The book then delves deeper into Scala’s powerful collections system because many of Apache Spark’s APIs bear a strong resemblance to Scala collections. Along the way you’ll see the development life cycle of a Scala program. This involves compiling and building programs using the industry-standard Scala Build Tool (SBT). You’ll cover guidelines related to dependency management using SBT as this is critical for building large Apache Spark applications. Scala Programming for Big Data Analytics concludes by demonstrating how you can make use of the concepts to write programs that run on the Apache Spark framework. These programs will provide distributed and parallel computing, which is critical for big data analytics. What You Will Learn See the fundamentals of Scala as a general-purpose programming language Understand functional programming and object-oriented programming constructs in Scala Use Scala collections and functions Develop, package and run Apache Spark applications for big data analytics Who This Book Is For Data scientists, data analysts and data engineers who intend to use Apache Spark for large-scale analytics. /div

Data Science Fundamentals and Practical Approaches

Author : Dr. Gypsy Nandi
File Size : 41.48 MB
Format : PDF, ePub, Docs
Download : 667
Read : 1112
Download »
Learn how to process and analysis data using Python KEY FEATURES - The book has theories explained elaborately along with Python code and corresponding output to support the theoretical explanations. The Python codes are provided with step-by-step comments to explain each instruction of the code. - The book is not just dealing with the background mathematics alone or only the programs but beautifully correlates the background mathematics to the theory and then finally translating it into the programs. - A rich set of chapter-end exercises are provided, consisting of both short-answer questions and long-answer questions. DESCRIPTION This book introduces the fundamental concepts of Data Science, which has proved to be a major game-changer in business solving problems. Topics covered in the book include fundamentals of Data Science, data preprocessing, data plotting and visualization, statistical data analysis, machine learning for data analysis, time-series analysis, deep learning for Data Science, social media analytics, business analytics, and Big Data analytics. The content of the book describes the fundamentals of each of the Data Science related topics together with illustrative examples as to how various data analysis techniques can be implemented using different tools and libraries of Python programming language. Each chapter contains numerous examples and illustrative output to explain the important basic concepts. An appropriate number of questions is presented at the end of each chapter for self-assessing the conceptual understanding. The references presented at the end of every chapter will help the readers to explore more on a given topic. WHAT WILL YOU LEARN Perform processing on data for making it ready for visual plot and understand the pattern in data over time. Understand what machine learning is and how learning can be incorporated into a program. Know how tools can be used to perform analysis on big data using python and other standard tools. Perform social media analytics, business analytics, and data analytics on any data of a company or organization. WHO THIS BOOK IS FOR The book is for readers with basic programming and mathematical skills. The book is for any engineering graduates that wish to apply data science in their projects or wish to build a career in this direction. The book can be read by anyone who has an interest in data analysis and would like to explore more out of interest or to apply it to certain real-life problems. TABLE OF CONTENTS 1. Fundamentals of Data Science1 2. Data Preprocessing 3. Data Plotting and Visualization 4. Statistical Data Analysis 5. Machine Learning for Data Science 6. Time-Series Analysis 7. Deep Learning for Data Science 8. Social Media Analytics 9. Business Analytics 10. Big Data Analytics

Principles of Big Data

Author : Jules J. Berman
File Size : 78.89 MB
Format : PDF
Download : 788
Read : 963
Download »
Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. Learn general methods for specifying Big Data in a way that is understandable to humans and to computers Avoid the pitfalls in Big Data design and analysis Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources

Fundamentals of Information Systems

Author : Ralph Stair
File Size : 37.45 MB
Format : PDF, Mobi
Download : 851
Read : 788
Download »
Readers gain an overview of the core principles of IS and how it is practiced today as the concise, nine-chapter FUNDAMENTALS OF INFORMATION SYSTEMS, 9th edition combines the latest research with the most current coverage available. The book addresses analytics; big data; business intelligence; cloud computing; cybercrime; information system security; e-commerce; enterprise systems; ethical, legal, and social issues of information systems; mobile computing solutions; and systems acquisition and development. Readers learn how information systems can increase profits and reduce costs as they explore the latest information on artificial intelligence, change management, consumerization of information systems, data governance, energy and environmental concerns, global IS challenges, Internet of Everything, Internet censorship and net neutrality, IS careers, and virtual teams. Maximize success as an employee, decision maker, and business leader with this streamlined, contemporary resource. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Fundamentals of Big Data Network Analysis for Research and Industry

Author : Hyunjoung Lee
File Size : 22.14 MB
Format : PDF, Kindle
Download : 718
Read : 1005
Download »
Fundamentals of Big Data Network Analysis for Research and Industry Hyunjoung Lee, "Institute of Green Technology, Yonsei University, Republic of Korea" Il Sohn, "Material Science and Engineering, " "Yonsei University, Republic of Korea" Presents the methodology of big data analysis using examples from research and industry There are large amounts of data everywhere, and the ability to pick out crucial information is increasingly important. Contrary to popular belief, not all information is useful; big data network analysis assumes that data is not only large, but also meaningful, and this book focuses on the fundamental techniques required to extract essential information from vast datasets. Featuring case studies drawn largely from the iron and steel industries, this book offers practical guidance which will enable readers to easily understand big data network analysis. Particular attention is paid to the methodology of network analysis, offering information on the method of data collection, on research design and analysis, and on the interpretation of results. A variety of programs including UCINET, NetMiner, R, NodeXL, and Gephi for network analysis are covered in detail. "Fundamentals of Big Data Network Analysis" "for Research and Industry" looks at big data from a fresh perspective, and provides a new approach to data analysis. "This book" Explains the basic concepts in understanding big data and filtering meaningful data Presents big data analysis within the networking perspective Features methodology applicable to research and industry Describes in detail the social relationship between big data and its implications Provides insight into identifying patterns and relationships between seemingly unrelated big data "Fundamentals of Big Data Network Analysis" "for Research and Industry" will prove a valuable resource for analysts, research engineers, industrial engineers, marketing professionals, and any individuals dealing with accumulated large data whose interest is to analyze and identify potential relationships among data sets.

Big Data Research for Social Sciences and Social Impact

Author : Miltiadis D. Lytras
File Size : 71.64 MB
Format : PDF, Mobi
Download : 633
Read : 1251
Download »
A new era of innovation is enabled by the integration of social sciences and information systems research. In this context, the adoption of Big Data and analytics technology brings new insight to the social sciences. It also delivers new, flexible responses to crucial social problems and challenges. We are proud to deliver this edited volume on the social impact of big data research. It is one of the first initiatives worldwide analyzing of the impact of this kind of research on individuals and social issues. The organization of the relevant debate is arranged around three pillars: Section A: Big Data Research for Social Impact: • Big Data and Their Social Impact; • (Smart) Citizens from Data Providers to Decision-Makers; • Towards Sustainable Development of Online Communities; • Sentiment from Online Social Networks; • Big Data for Innovation. Section B. Techniques and Methods for Big Data driven research for Social Sciences and Social Impact: • Opinion Mining on Social Media; • Sentiment Analysis of User Preferences; • Sustainable Urban Communities; • Gender Based Check-In Behavior by Using Social Media Big Data; • Web Data-Mining Techniques; • Semantic Network Analysis of Legacy News Media Perception. Section C. Big Data Research Strategies: • Skill Needs for Early Career Researchers—A Text Mining Approach; • Pattern Recognition through Bibliometric Analysis; • Assessing an Organization’s Readiness to Adopt Big Data; • Machine Learning for Predicting Performance; • Analyzing Online Reviews Using Text Mining; • Context–Problem Network and Quantitative Method of Patent Analysis. Complementary social and technological factors including: • Big Social Networks on Sustainable Economic Development; Business Intelligence.

Big Data Analytics

Author : Venkat Ankam
File Size : 26.85 MB
Format : PDF
Download : 699
Read : 941
Download »
A handy reference guide for data analysts and data scientists to help to obtain value from big data analytics using Spark on Hadoop clusters About This Book This book is based on the latest 2.0 version of Apache Spark and 2.7 version of Hadoop integrated with most commonly used tools. Learn all Spark stack components including latest topics such as DataFrames, DataSets, GraphFrames, Structured Streaming, DataFrame based ML Pipelines and SparkR. Integrations with frameworks such as HDFS, YARN and tools such as Jupyter, Zeppelin, NiFi, Mahout, HBase Spark Connector, GraphFrames, H2O and Hivemall. Who This Book Is For Though this book is primarily aimed at data analysts and data scientists, it will also help architects, programmers, and practitioners. Knowledge of either Spark or Hadoop would be beneficial. It is assumed that you have basic programming background in Scala, Python, SQL, or R programming with basic Linux experience. Working experience within big data environments is not mandatory. What You Will Learn Find out and implement the tools and techniques of big data analytics using Spark on Hadoop clusters with wide variety of tools used with Spark and Hadoop Understand all the Hadoop and Spark ecosystem components Get to know all the Spark components: Spark Core, Spark SQL, DataFrames, DataSets, Conventional and Structured Streaming, MLLib, ML Pipelines and Graphx See batch and real-time data analytics using Spark Core, Spark SQL, and Conventional and Structured Streaming Get to grips with data science and machine learning using MLLib, ML Pipelines, H2O, Hivemall, Graphx, SparkR and Hivemall. In Detail Big Data Analytics book aims at providing the fundamentals of Apache Spark and Hadoop. All Spark components – Spark Core, Spark SQL, DataFrames, Data sets, Conventional Streaming, Structured Streaming, MLlib, Graphx and Hadoop core components – HDFS, MapReduce and Yarn are explored in greater depth with implementation examples on Spark + Hadoop clusters. It is moving away from MapReduce to Spark. So, advantages of Spark over MapReduce are explained at great depth to reap benefits of in-memory speeds. DataFrames API, Data Sources API and new Data set API are explained for building Big Data analytical applications. Real-time data analytics using Spark Streaming with Apache Kafka and HBase is covered to help building streaming applications. New Structured streaming concept is explained with an IOT (Internet of Things) use case. Machine learning techniques are covered using MLLib, ML Pipelines and SparkR and Graph Analytics are covered with GraphX and GraphFrames components of Spark. Readers will also get an opportunity to get started with web based notebooks such as Jupyter, Apache Zeppelin and data flow tool Apache NiFi to analyze and visualize data. Style and approach This step-by-step pragmatic guide will make life easy no matter what your level of experience. You will deep dive into Apache Spark on Hadoop clusters through ample exciting real-life examples. Practical tutorial explains data science in simple terms to help programmers and data analysts get started with Data Science

Big Data and Knowledge Sharing in Virtual Organizations

Author : Gyamfi, Albert
File Size : 65.6 MB
Format : PDF, ePub, Docs
Download : 755
Read : 749
Download »
Knowledge in its pure state is tacit in nature—difficult to formalize and communicate—but can be converted into codified form and shared through both social interactions and the use of IT-based applications and systems. Even though there seems to be considerable synergies between the resulting huge data and the convertible knowledge, there is still a debate on how the increasing amount of data captured by corporations could improve decision making and foster innovation through effective knowledge-sharing practices. Big Data and Knowledge Sharing in Virtual Organizations provides innovative insights into the influence of big data analytics and artificial intelligence and the tools, methods, and techniques for knowledge-sharing processes in virtual organizations. The content within this publication examines cloud computing, machine learning, and knowledge sharing. It is designed for government officials and organizations, policymakers, academicians, researchers, technology developers, and students.

Resource Management for Big Data Platforms

Author : Florin Pop
File Size : 47.32 MB
Format : PDF, ePub, Mobi
Download : 876
Read : 303
Download »
Serving as a flagship driver towards advance research in the area of Big Data platforms and applications, this book provides a platform for the dissemination of advanced topics of theory, research efforts and analysis, and implementation oriented on methods, techniques and performance evaluation. In 23 chapters, several important formulations of the architecture design, optimization techniques, advanced analytics methods, biological, medical and social media applications are presented. These chapters discuss the research of members from the ICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications (cHiPSet). This volume is ideal as a reference for students, researchers and industry practitioners working in or interested in joining interdisciplinary works in the areas of intelligent decision systems using emergent distributed computing paradigms. It will also allow newcomers to grasp the key concerns and their potential solutions.


File Size : 89.14 MB
Format : PDF, Kindle
Download : 933
Read : 989
Download »

Hadoop Fundamentals for Data Scientists

Author : Benjamin Bengfort
File Size : 86.1 MB
Format : PDF, Docs
Download : 321
Read : 1252
Download »
"Get a practical introduction to Hadoop, the framework that made big data and large-scale analytics possible by combining distributed computing techniques with distributed storage. In this video tutorial, hosts Benjamin Bengfort and Jenny Kim discuss the core concepts behind distributed computing and big data, and then show you how to work with a Hadoop cluster and program anlaytical jobs. You'll also learn how to use higher-level tools such as Hive and Spark."--Resource description page.

Data intensive Systems

Author : Tomasz Wiktorski
File Size : 84.43 MB
Format : PDF, Docs
Download : 114
Read : 831
Download »
Data-intensive systems are a technological building block supporting Big Data and Data Science applications.This book familiarizes readers with core concepts that they should be aware of before continuing with independent work and the more advanced technical reference literature that dominates the current landscape. The material in the book is structured following a problem-based approach. This means that the content in the chapters is focused on developing solutions to simplified, but still realistic problems using data-intensive technologies and approaches. The reader follows one reference scenario through the whole book, that uses an open Apache dataset. The origins of this volume are in lectures from a master’s course in Data-intensive Systems, given at the University of Stavanger. Some chapters were also a base for guest lectures at Purdue University and Lodz University of Technology.

Big Data Bootcamp

Author : David Feinleib
File Size : 46.65 MB
Format : PDF, Docs
Download : 285
Read : 466
Download »
Investors and technology gurus have called big data one of the most important trends to come along in decades. Big Data Bootcamp explains what big data is and how you can use it in your company to become one of tomorrow’s market leaders. Along the way, it explains the very latest technologies, companies, and advancements. Big data holds the keys to delivering better customer service, offering more attractive products, and unlocking innovation. That’s why, to remain competitive, every organization should become a big data company. It’s also why every manager and technology professional should become knowledgeable about big data and how it is transforming not just their own industries but the global economy. And that knowledge is just what this book delivers. It explains components of big data like Hadoop and NoSQL databases; how big data is compiled, queried, and analyzed; how to create a big data application; and the business sectors ripe for big data-inspired products and services like retail, healthcare, finance, and education. Best of all, your guide is David Feinleib, renowned entrepreneur, venture capitalist, and author of Why Startups Fail. Feinleib’s Big Data Landscape, a market map featured and explained in the book, is an industry benchmark that has been viewed more than 150,000 times and is used as a reference by VMWare, Dell, Intel, the U.S. Government Accountability Office, and many other organizations. Feinleib also explains: • Why every businessperson needs to understand the fundamentals of big data or get run over by those who do • How big data differs from traditional database management systems • How to create and run a big data project • The technical details powering the big data revolution Whether you’re a Fortune 500 executive or the proprietor of a restaurant or web design studio, Big Data Bootcamp will explain how you can take full advantage of new technologies to transform your company and your career.

Fundamentals of Clinical Data Science

Author : Pieter Kubben
File Size : 90.80 MB
Format : PDF, Mobi
Download : 890
Read : 1327
Download »
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.

Information Granularity Big Data and Computational Intelligence

Author : Witold Pedrycz
File Size : 73.8 MB
Format : PDF, ePub
Download : 422
Read : 729
Download »
The recent pursuits emerging in the realm of big data processing, interpretation, collection and organization have emerged in numerous sectors including business, industry and government organizations. Data sets such as customer transactions for a mega-retailer, weather monitoring, intelligence gathering, quickly outpace the capacities of traditional techniques and tools of data analysis. The 3V (volume, variability and velocity) challenges led to the emergence of new techniques and tools in data visualization, acquisition, and serialization. Soft Computing being regarded as a plethora of technologies of fuzzy sets (or Granular Computing), neurocomputing and evolutionary optimization brings forward a number of unique features that might be instrumental to the development of concepts and algorithms to deal with big data. This carefully edited volume provides the reader with an updated, in-depth material on the emerging principles, conceptual underpinnings, algorithms and practice of Computational Intelligence in the realization of concepts and implementation of big data architectures, analysis, and interpretation as well as data analytics. The book is aimed at a broad audience of researchers and practitioners including those active in various disciplines in which big data, their analysis and optimization are of genuine relevance. One focal point is the systematic exposure of the concepts, design methodology, and detailed algorithms. In general, the volume adheres to the top-down strategy starting with the concepts and motivation and then proceeding with the detailed design that materializes in specific algorithms and representative applications. The material is self-contained and provides the reader with all necessary prerequisites and augments some parts with a step-by-step explanation of more advanced concepts supported by a significant amount of illustrative numeric material and some application scenarios to motivate the reader and make some abstract concepts more tangible.

Data Science Fundamentals

Author : Lars Nielsen
File Size : 89.17 MB
Format : PDF, ePub, Docs
Download : 591
Read : 225
Download »
Bestselling author and tech guru Lars Nielsen teams with Noreen Burlingame to provide an insightful and completely user-friendly "first book" on data science basics. Nielsen and Burlingame explain the role of data science in the mining of useful, actionable information from big data ... reveal the rudiments of managing, cleaning and modeling unstructured data ... lay out the subtle arts of data visualization and predictive analysis ... explore the Hadoop platform ... and much more.