Search results for: c-machine-learning-projects

Building Computer Vision Projects with OpenCV 4 and C

Author : David Millán Escrivá
File Size : 23.59 MB
Format : PDF, ePub, Mobi
Download : 406
Read : 166
Download »
Delve into practical computer vision and image processing projects and get up to speed with advanced object detection techniques and machine learning algorithms Key Features Discover best practices for engineering and maintaining OpenCV projects Explore important deep learning tools for image classification Understand basic image matrix formats and filters Book Description OpenCV is one of the best open source libraries available and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. This Learning Path is your guide to understanding OpenCV concepts and algorithms through real-world examples and activities. Through various projects, you'll also discover how to use complex computer vision and machine learning algorithms and face detection to extract the maximum amount of information from images and videos. In later chapters, you'll learn to enhance your videos and images with optical flow analysis and background subtraction. Sections in the Learning Path will help you get to grips with text segmentation and recognition, in addition to guiding you through the basics of the new and improved deep learning modules. By the end of this Learning Path, you will have mastered commonly used computer vision techniques to build OpenCV projects from scratch. This Learning Path includes content from the following Packt books: Mastering OpenCV 4 - Third Edition by Roy Shilkrot and David Millán Escrivá Learn OpenCV 4 By Building Projects - Second Edition by David Millán Escrivá, Vinícius G. Mendonça, and Prateek Joshi What you will learn Stay up-to-date with algorithmic design approaches for complex computer vision tasks Work with OpenCV's most up-to-date API through various projects Understand 3D scene reconstruction and Structure from Motion (SfM) Study camera calibration and overlay augmented reality (AR) using the ArUco module Create CMake scripts to compile your C++ application Explore segmentation and feature extraction techniques Remove backgrounds from static scenes to identify moving objects for surveillance Work with new OpenCV functions to detect and recognize text with Tesseract Who this book is for If you are a software developer with a basic understanding of computer vision and image processing and want to develop interesting computer vision applications with OpenCV, this Learning Path is for you. Prior knowledge of C++ and familiarity with mathematical concepts will help you better understand the concepts in this Learning Path.

Go Machine Learning Projects

Author : Xuanyi Chew
File Size : 46.48 MB
Format : PDF, ePub
Download : 858
Read : 150
Download »
Work through exciting projects to explore the capabilities of Go and Machine Learning Key Features Explore ML tasks and Go’s machine learning ecosystem Implement clustering, regression, classification, and neural networks with Go Get to grips with libraries such as Gorgonia, Gonum, and GoCv for training models in Go Book Description Go is the perfect language for machine learning; it helps to clearly describe complex algorithms, and also helps developers to understand how to run efficient optimized code. This book will teach you how to implement machine learning in Go to make programs that are easy to deploy and code that is not only easy to understand and debug, but also to have its performance measured. The book begins by guiding you through setting up your machine learning environment with Go libraries and capabilities. You will then plunge into regression analysis of a real-life house pricing dataset and build a classification model in Go to classify emails as spam or ham. Using Gonum, Gorgonia, and STL, you will explore time series analysis along with decomposition and clean up your personal Twitter timeline by clustering tweets. In addition to this, you will learn how to recognize handwriting using neural networks and convolutional neural networks. Lastly, you'll learn how to choose the most appropriate machine learning algorithms to use for your projects with the help of a facial detection project. By the end of this book, you will have developed a solid machine learning mindset, a strong hold on the powerful Go toolkit, and a sound understanding of the practical implementations of machine learning algorithms in real-world projects. What you will learn Set up a machine learning environment with Go libraries Use Gonum to perform regression and classification Explore time series models and decompose trends with Go libraries Clean up your Twitter timeline by clustering tweets Learn to use external services for your machine learning needs Recognize handwriting using neural networks and CNN with Gorgonia Implement facial recognition using GoCV and OpenCV Who this book is for If you’re a machine learning engineer, data science professional, or Go programmer who wants to implement machine learning in your real-world projects and make smarter applications easily, this book is for you. Some coding experience in Golang and knowledge of basic machine learning concepts will help you in understanding the concepts covered in this book.

C Machine Learning Projects

Author : Yoon Hyup Hwang
File Size : 32.18 MB
Format : PDF, ePub
Download : 682
Read : 267
Download »
Power your C# and .NET applications with exciting machine learning models and modular projects Key Features Produce classification, regression, association, and clustering models Expand your understanding of machine learning and C# Get to grips with C# packages such as Accord.net, LiveCharts, and Deedle Book Description Machine learning is applied in almost all kinds of real-world surroundings and industries, right from medicine to advertising; from finance to scientifc research. This book will help you learn how to choose a model for your problem, how to evaluate the performance of your models, and how you can use C# to build machine learning models for your future projects. You will get an overview of the machine learning systems and how you, as a C# and .NET developer, can apply your existing knowledge to the wide gamut of intelligent applications, all through a project-based approach. You will start by setting up your C# environment for machine learning with the required packages, Accord.NET, LiveCharts, and Deedle. We will then take you right from building classifcation models for spam email fltering and applying NLP techniques to Twitter sentiment analysis, to time-series and regression analysis for forecasting foreign exchange rates and house prices, as well as drawing insights on customer segments in e-commerce. You will then build a recommendation model for music genre recommendation and an image recognition model for handwritten digits. Lastly, you will learn how to detect anomalies in network and credit card transaction data for cyber attack and credit card fraud detections. By the end of this book, you will be putting your skills in practice and implementing your machine learning knowledge in real projects. What you will learn Set up the C# environment for machine learning with required packages Build classification models for spam email filtering Get to grips with feature engineering using NLP techniques for Twitter sentiment analysis Forecast foreign exchange rates using continuous and time-series data Make a recommendation model for music genre recommendation Familiarize yourself with munging image data and Neural Network models for handwritten-digit recognition Use Principal Component Analysis (PCA) for cyber attack detection One-Class Support Vector Machine for credit card fraud detection Who this book is for If you're a C# or .NET developer with good knowledge of C#, then this book is perfect for you to get Machine Learning into your projects and make smarter applications.

Hands On Machine Learning with C

Author : Kirill Kolodiazhnyi
File Size : 56.79 MB
Format : PDF, ePub
Download : 514
Read : 766
Download »
Implement supervised and unsupervised machine learning algorithms using C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib with the help of real-world examples and datasets Key Features Become familiar with data processing, performance measuring, and model selection using various C++ libraries Implement practical machine learning and deep learning techniques to build smart models Deploy machine learning models to work on mobile and embedded devices Book Description C++ can make your machine learning models run faster and more efficiently. This handy guide will help you learn the fundamentals of machine learning (ML), showing you how to use C++ libraries to get the most out of your data. This book makes machine learning with C++ for beginners easy with its example-based approach, demonstrating how to implement supervised and unsupervised ML algorithms through real-world examples. This book will get you hands-on with tuning and optimizing a model for different use cases, assisting you with model selection and the measurement of performance. You’ll cover techniques such as product recommendations, ensemble learning, and anomaly detection using modern C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Next, you’ll explore neural networks and deep learning using examples such as image classification and sentiment analysis, which will help you solve various problems. Later, you’ll learn how to handle production and deployment challenges on mobile and cloud platforms, before discovering how to export and import models using the ONNX format. By the end of this C++ book, you will have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems. What you will learn Explore how to load and preprocess various data types to suitable C++ data structures Employ key machine learning algorithms with various C++ libraries Understand the grid-search approach to find the best parameters for a machine learning model Implement an algorithm for filtering anomalies in user data using Gaussian distribution Improve collaborative filtering to deal with dynamic user preferences Use C++ libraries and APIs to manage model structures and parameters Implement a C++ program to solve image classification tasks with LeNet architecture Who this book is for You will find this C++ machine learning book useful if you want to get started with machine learning algorithms and techniques using the popular C++ language. As well as being a useful first course in machine learning with C++, this book will also appeal to data analysts, data scientists, and machine learning developers who are looking to implement different machine learning models in production using varied datasets and examples. Working knowledge of the C++ programming language is mandatory to get started with this book.

Scala Machine Learning Projects

Author : Md. Rezaul Karim
File Size : 43.85 MB
Format : PDF, ePub
Download : 447
Read : 661
Download »
Powerful smart applications using deep learning algorithms to dominate numerical computing, deep learning, and functional programming. Key Features Explore machine learning techniques with prominent open source Scala libraries such as Spark ML, H2O, MXNet, Zeppelin, and DeepLearning4j Solve real-world machine learning problems by delving complex numerical computing with Scala functional programming in a scalable and faster way Cover all key aspects such as collection, storing, processing, analyzing, and evaluation required to build and deploy machine models on computing clusters using Scala Play framework. Book Description Machine learning has had a huge impact on academia and industry by turning data into actionable information. Scala has seen a steady rise in adoption over the past few years, especially in the fields of data science and analytics. This book is for data scientists, data engineers, and deep learning enthusiasts who have a background in complex numerical computing and want to know more hands-on machine learning application development. If you're well versed in machine learning concepts and want to expand your knowledge by delving into the practical implementation of these concepts using the power of Scala, then this book is what you need! Through 11 end-to-end projects, you will be acquainted with popular machine learning libraries such as Spark ML, H2O, DeepLearning4j, and MXNet. At the end, you will be able to use numerical computing and functional programming to carry out complex numerical tasks to develop, build, and deploy research or commercial projects in a production-ready environment. What you will learn Apply advanced regression techniques to boost the performance of predictive models Use different classification algorithms for business analytics Generate trading strategies for Bitcoin and stock trading using ensemble techniques Train Deep Neural Networks (DNN) using H2O and Spark ML Utilize NLP to build scalable machine learning models Learn how to apply reinforcement learning algorithms such as Q-learning for developing ML application Learn how to use autoencoders to develop a fraud detection application Implement LSTM and CNN models using DeepLearning4j and MXNet Who this book is for If you want to leverage the power of both Scala and Spark to make sense of Big Data, then this book is for you. If you are well versed with machine learning concepts and wants to expand your knowledge by delving into the practical implementation using the power of Scala, then this book is what you need! Strong understanding of Scala Programming language is recommended. Basic familiarity with machine Learning techniques will be more helpful.

Machine Learning Projects for NET Developers

Author : Mathias Brandewinder
File Size : 64.44 MB
Format : PDF, Kindle
Download : 775
Read : 653
Download »
Machine Learning Projects for .NET Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You’ll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language ideally suited to machine learning applications in .NET. If you’re new to F#, this book will give you everything you need to get started. If you’re already familiar with F#, this is your chance to put the language into action in an exciting new context. In a series of fascinating projects, you’ll learn how to: Build an optical character recognition (OCR) system from scratch Code a spam filter that learns by example Use F#’s powerful type providers to interface with external resources (in this case, data analysis tools from the R programming language) Transform your data into informative features, and use them to make accurate predictions Find patterns in data when you don’t know what you’re looking for Predict numerical values using regression models Implement an intelligent game that learns how to play from experience Along the way, you’ll learn fundamental ideas that can be applied in all kinds of real-world contexts and industries, from advertising to finance, medicine, and scientific research. While some machine learning algorithms use fairly advanced mathematics, this book focuses on simple but effective approaches. If you enjoy hacking code and data, this book is for you.

Building Machine Learning Systems with Python

Author : Willi Richert
File Size : 37.4 MB
Format : PDF, Kindle
Download : 923
Read : 324
Download »
This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro.

Building Machine Learning Pipelines

Author : Hannes Hapke
File Size : 56.32 MB
Format : PDF, Kindle
Download : 414
Read : 918
Download »
Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques

Introduction to Machine Learning with Python

Author : Andreas C. Müller
File Size : 32.58 MB
Format : PDF, Mobi
Download : 968
Read : 486
Download »
Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills

Deep Learning with TensorFlow

Author : Giancarlo Zaccone
File Size : 81.86 MB
Format : PDF, ePub, Mobi
Download : 357
Read : 1219
Download »
Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of TensorFlow. Key Features Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow Explore deep neural networks and layers of data abstraction with the help of this comprehensive guide Gain real-world contextualization through some deep learning problems concerning research and application Book Description Deep learning is a branch of machine learning algorithms based on learning multiple levels of abstraction. Neural networks, which are at the core of deep learning, are being used in predictive analytics, computer vision, natural language processing, time series forecasting, and to perform a myriad of other complex tasks. This book is conceived for developers, data analysts, machine learning practitioners and deep learning enthusiasts who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries. Throughout the book, you’ll learn how to develop deep learning applications for machine learning systems using Feedforward Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Autoencoders, and Factorization Machines. Discover how to attain deep learning programming on GPU in a distributed way. You'll come away with an in-depth knowledge of machine learning techniques and the skills to apply them to real-world projects. What you will learn Apply deep machine intelligence and GPU computing with TensorFlow Access public datasets and use TensorFlow to load, process, and transform the data Discover how to use the high-level TensorFlow API to build more powerful applications Use deep learning for scalable object detection and mobile computing Train machines quickly to learn from data by exploring reinforcement learning techniques Explore active areas of deep learning research and applications Who this book is for The book is for people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus.

Concept Formation and Knowledge Revision

Author : Stefan Wrobel
File Size : 84.6 MB
Format : PDF
Download : 623
Read : 724
Download »
A fundamental assumption of work in artificial intelligence and machine learning is that knowledge is expressed in a computer with the help of knowledge representations. Since the proper choice of such representations is a difficult task that fundamentally affects the capabilities of a system, the problem of automatic representation change is an important topic in current research. Concept Formation and Knowledge Revision focuses on representation change as a concept formation task, regarding concepts as the elementary representational vocabulary from which further statements are constructed. Taking an interdisciplinary approach from psychological foundations to computer implementations, the book draws on existing psychological results about the nature of human concepts and concept formation to determine the scope of concept formation phenomena, and to identify potential components of computational concept formation models. The central idea of this work is that computational concept formation can usefully be understood as a process that is triggered in a demand-driven fashion by the representational needs of the learning system, and identify the knowledge revision activities of a system as a particular context for such a process. The book presents a detailed analysis of the revision problem for first-order clausal theories, and develops a set of postulates that any such operation should satisfy. It shows how a minimum theory revision operator can be realized by using exception sets, and that this operator is indeed maximally general. The book then shows that concept formation can be triggered from within the knowledge revision process whenever the existing representation does not permit the plausible reformulation of an exception set, demonstrating the usefulness of the approach both theoretically and empirically within the learning knowledge acquisition system MOBAL. In using a first-order representation, this book is part of the rapidly developing field of Inductive Logic Programming (ILP). By integrating the computational issues with psychological and fundamental discussions of concept formation phenomena, the book will be of interest to readers both theoretically and psychologically inclined. From the foreword by Katharina Morik: ` The ideal to combine the three sources of artificial intelligence research has almost never been reached. Such a combined and integrated research requires the researcher to master different ways of thinking, different work styles, different sets of literature, and different research procedures. It requires capabilities in software engineering for the application part, in theoretical computer science for the theory part, and in psychology for the cognitive part. The most important capability for artificial intelligence is to keep the integrative view and to create a true original work that goes beyond the collection of pieces from different fields. This book achieves such an integrative view of concept formation and knowledge revision by presenting the way from psychological investigations that indicate that concepts are theories and point at the important role of a demand for learning. to an implemented system which supports users in their tasks when working with a knowledge base and its theoretical foundation. '

Mobile Artificial Intelligence Projects

Author : Karthikeyan NG
File Size : 38.56 MB
Format : PDF, ePub, Mobi
Download : 126
Read : 835
Download »
Learn to build end-to-end AI apps from scratch for Android and iOS using TensorFlow Lite, CoreML, and PyTorch Key Features Build practical, real-world AI projects on Android and iOS Implement tasks such as recognizing handwritten digits, sentiment analysis, and more Explore the core functions of machine learning, deep learning, and mobile vision Book Description We’re witnessing a revolution in Artificial Intelligence, thanks to breakthroughs in deep learning. Mobile Artificial Intelligence Projects empowers you to take part in this revolution by applying Artificial Intelligence (AI) techniques to design applications for natural language processing (NLP), robotics, and computer vision. This book teaches you to harness the power of AI in mobile applications along with learning the core functions of NLP, neural networks, deep learning, and mobile vision. It features a range of projects, covering tasks such as real-estate price prediction, recognizing hand-written digits, predicting car damage, and sentiment analysis. You will learn to utilize NLP and machine learning algorithms to make applications more predictive, proactive, and capable of making autonomous decisions with less human input. In the concluding chapters, you will work with popular libraries, such as TensorFlow Lite, CoreML, and PyTorch across Android and iOS platforms. By the end of this book, you will have developed exciting and more intuitive mobile applications that deliver a customized and more personalized experience to users. What you will learn Explore the concepts and fundamentals of AI, deep learning, and neural networks Implement use cases for machine vision and natural language processing Build an ML model to predict car damage using TensorFlow Deploy TensorFlow on mobile to convert speech to text Implement GAN to recognize hand-written digits Develop end-to-end mobile applications that use AI principles Work with popular libraries, such as TensorFlow Lite, CoreML, and PyTorch Who this book is for Mobile Artificial Intelligence Projects is for machine learning professionals, deep learning engineers, AI engineers, and software engineers who want to integrate AI technology into mobile-based platforms and applications. Sound knowledge of machine learning and experience with any programming language is all you need to get started with this book.

ADA Yearbook 1993

Author : Chris Loftus
File Size : 86.3 MB
Format : PDF
Download : 962
Read : 570
Download »

Fundamentals of Machine Learning for Predictive Data Analytics

Author : John D. Kelleher
File Size : 46.97 MB
Format : PDF, Mobi
Download : 496
Read : 1168
Download »
A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Deep Learning

Author : Josh Patterson
File Size : 28.66 MB
Format : PDF, ePub, Mobi
Download : 417
Read : 1284
Download »
How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.

Machine Learning in Bioinformatics

Author : Yanqing Zhang
File Size : 43.65 MB
Format : PDF, Docs
Download : 703
Read : 880
Download »
An introduction to machine learning methods and their applications to problems in bioinformatics Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. From an internationally recognized panel of prominent researchers in the field, Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics. Coverage includes: feature selection for genomic and proteomic data mining; comparing variable selection methods in gene selection and classification of microarray data; fuzzy gene mining; sequence-based prediction of residue-level properties in proteins; probabilistic methods for long-range features in biosequences; and much more. Machine Learning in Bioinformatics is an indispensable resource for computer scientists, engineers, biologists, mathematicians, researchers, clinicians, physicians, and medical informaticists. It is also a valuable reference text for computer science, engineering, and biology courses at the upper undergraduate and graduate levels.

Expert C

Author : Vardan Grigoryan
File Size : 34.4 MB
Format : PDF, Kindle
Download : 779
Read : 372
Download »
Design and architect real-world scalable C++ applications by exploring advanced techniques in low-level programming, object-oriented programming (OOP), the Standard Template Library (STL), metaprogramming, and concurrency Key Features Design professional-grade, maintainable apps by learning advanced concepts such as functional programming, templates, and networking Apply design patterns and best practices to solve real-world problems Improve the performance of your projects by designing concurrent data structures and algorithms Book Description C++ has evolved over the years and the latest release – C++20 – is now available. Since C++11, C++ has been constantly enhancing the language feature set. With the new version, you’ll explore an array of features such as concepts, modules, ranges, and coroutines. This book will be your guide to learning the intricacies of the language, techniques, C++ tools, and the new features introduced in C++20, while also helping you apply these when building modern and resilient software. You’ll start by exploring the latest features of C++, and then move on to advanced techniques such as multithreading, concurrency, debugging, monitoring, and high-performance programming. The book will delve into object-oriented programming principles and the C++ Standard Template Library, and even show you how to create custom templates. After this, you’ll learn about different approaches such as test-driven development (TDD), behavior-driven development (BDD), and domain-driven design (DDD), before taking a look at the coding best practices and design patterns essential for building professional-grade applications. Toward the end of the book, you will gain useful insights into the recent C++ advancements in AI and machine learning. By the end of this C++ programming book, you’ll have gained expertise in real-world application development, including the process of designing complex software. What you will learn Understand memory management and low-level programming in C++ to write secure and stable applications Discover the latest C++20 features such as modules, concepts, ranges, and coroutines Understand debugging and testing techniques and reduce issues in your programs Design and implement GUI applications using Qt5 Use multithreading and concurrency to make your programs run faster Develop high-end games by using the object-oriented capabilities of C++ Explore AI and machine learning concepts with C++ Who this book is for This C++ book is for experienced C++ developers who are looking to take their knowledge to the next level and perfect their skills in building professional-grade applications.

Ensembles in Machine Learning Applications

Author : Oleg Okun
File Size : 48.18 MB
Format : PDF, Mobi
Download : 151
Read : 1036
Download »
This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms – advanced machine learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems. This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications.

Machine Learning Techniques for Multimedia

Author : Matthieu Cord
File Size : 26.89 MB
Format : PDF, Mobi
Download : 173
Read : 780
Download »
Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Arising from the EU MUSCLE network, this multidisciplinary book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain.

Case Based Learning

Author : Janet L. Kolodner
File Size : 77.31 MB
Format : PDF, ePub, Docs
Download : 352
Read : 793
Download »
Case-based reasoning means reasoning based on remembering previous experiences. A reasoner using old experiences (cases) might use those cases to suggest solutions to problems, to point out potential problems with a solution being computed, to interpret a new situation and make predictions about what might happen, or to create arguments justifying some conclusion. A case-based reasoner solves new problems by remembering old situations and adapting their solutions. It interprets new situations by remembering old similar situations and comparing and contrasting the new one to old ones to see where it fits best. Case-based reasoning combines reasoning with learning. It spans the whole reasoning cycle. A situation is experienced. Old situations are used to understand it. Old situations are used to solve a problem (if there is one to be solved). Then the new situation is inserted into memory alongside the cases it used for reasoning, to be used another time. The key to this reasoning method, then, is remembering. Remembering has two parts: integrating cases or experiences into memory when they happen and recalling them in appropriate situations later on. The case-based reasoning community calls this related set of issues the indexing problem. In broad terms, it means finding in memory the experience closest to a new situation. In narrower terms, it can be described as a two-part problem: assigning indexes or labels to experiences when they are put into memory that describe the situations to which they are applicable, so that they can be recalled later; and at recall time, elaborating the new situation in enough detail so that the indexes it would have if it were in the memory are identified. Case-Based Learning is an edited volume of original research comprising invited contributions by leading workers. This work has also been published as a special issues of MACHINE LEARNING, Volume 10, No. 3.