Search results for: data-mining-and-applications-in-genomics

Data Mining and Applications in Genomics

Author : Sio-Iong Ao
File Size : 66.11 MB
Format : PDF, Docs
Download : 953
Read : 428
Download »
Data Mining and Applications in Genomics contains the data mining algorithms and their applications in genomics, with frontier case studies based on the recent and current works at the University of Hong Kong and the Oxford University Computing Laboratory, University of Oxford. It provides a systematic introduction to the use of data mining algorithms as an investigative tool for applications in genomics. Data Mining and Applications in Genomics offers state of the art of tremendous advances in data mining algorithms and applications in genomics and also serves as an excellent reference work for researchers and graduate students working on data mining algorithms and applications in genomics.

Data Mining and Applications in Genomics

Author :
File Size : 61.24 MB
Format : PDF, ePub, Docs
Download : 845
Read : 1275
Download »
Data Mining and Applications in Genomics contains the data mining algorithms and their applications in genomics, with frontier case studies based on the recent and current works at the University of Hong Kong and the Oxford University Computing Laboratory, University of Oxford. It provides a systematic introduction to the use of data mining algorithms as an investigative tool for applications in genomics. Data Mining and Applications in Genomics offers state of the art of tremendous advances in data mining algorithms and applications in genomics and also serves as an excellent reference work for researchers and graduate students working on data mining algorithms and applications in genomics.

Fundamentals of Data Mining in Genomics and Proteomics

Author : Werner Dubitzky
File Size : 67.15 MB
Format : PDF, ePub, Mobi
Download : 891
Read : 768
Download »
This book presents state-of-the-art analytical methods from statistics and data mining for the analysis of high-throughput data from genomics and proteomics. It adopts an approach focusing on concepts and applications and presents key analytical techniques for the analysis of genomics and proteomics data by detailing their underlying principles, merits and limitations.

Advances in Data Mining

Author : Petra Perner
File Size : 68.10 MB
Format : PDF, ePub, Mobi
Download : 169
Read : 968
Download »
This book presents papers describing selected projects on the topic of data mining in fields like e commerce, medicine, and knowledge management. The objective is to report on current results and at the same time to give a review on the present activities in this field in Germany. An effort has been made to include the latest scientific results, as well as lead the reader to the various fields of activity and the problems related to them. Knowledge discovery on the basis of web data is a wide and fast growing area. E commerce is the principal theme of motivation in this field, as companies invest large sums in the electronic market, in order to maximize their profits and minimize their risks. Other applications are telelearning, teleteaching, service support, and citizen information systems. Concerning these applications, there is a great need to understand and support the user by means of recommendation systems, adaptive information systems, as well as by personalization. In this respect Giudici and Blanc present in their paper procedures for the generation of associative models from the tracking behavior of the user. Perner and Fiss present in their paper a strategy for intelligent e marketing with web mining and personalization. Methods and procedures for the generation of associative rules are presented in the paper by Hipp, Güntzer, and Nakhaeidizadeh.

Data Mining for Bioinformatics

Author : Sumeet Dua
File Size : 36.10 MB
Format : PDF
Download : 456
Read : 581
Download »
Covering theory, algorithms, and methodologies, as well as data mining technologies, Data Mining for Bioinformatics provides a comprehensive discussion of data-intensive computations used in data mining with applications in bioinformatics. It supplies a broad, yet in-depth, overview of the application domains of data mining for bioinformatics to help readers from both biology and computer science backgrounds gain an enhanced understanding of this cross-disciplinary field. The book offers authoritative coverage of data mining techniques, technologies, and frameworks used for storing, analyzing, and extracting knowledge from large databases in the bioinformatics domains, including genomics and proteomics. It begins by describing the evolution of bioinformatics and highlighting the challenges that can be addressed using data mining techniques. Introducing the various data mining techniques that can be employed in biological databases, the text is organized into four sections: Supplies a complete overview of the evolution of the field and its intersection with computational learning Describes the role of data mining in analyzing large biological databases—explaining the breath of the various feature selection and feature extraction techniques that data mining has to offer Focuses on concepts of unsupervised learning using clustering techniques and its application to large biological data Covers supervised learning using classification techniques most commonly used in bioinformatics—addressing the need for validation and benchmarking of inferences derived using either clustering or classification The book describes the various biological databases prominently referred to in bioinformatics and includes a detailed list of the applications of advanced clustering algorithms used in bioinformatics. Highlighting the challenges encountered during the application of classification on biological databases, it considers systems of both single and ensemble classifiers and shares effort-saving tips for model selection and performance estimation strategies.

Handbook of Statistical Analysis and Data Mining Applications

Author : Robert Nisbet
File Size : 82.42 MB
Format : PDF
Download : 364
Read : 1122
Download »
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Biological Data Mining

Author : Jake Y. Chen
File Size : 69.13 MB
Format : PDF, ePub
Download : 855
Read : 1206
Download »
Like a data-guzzling turbo engine, advanced data mining has been powering post-genome biological studies for two decades. Reflecting this growth, Biological Data Mining presents comprehensive data mining concepts, theories, and applications in current biological and medical research. Each chapter is written by a distinguished team of interdisciplinary data mining researchers who cover state-of-the-art biological topics. The first section of the book discusses challenges and opportunities in analyzing and mining biological sequences and structures to gain insight into molecular functions. The second section addresses emerging computational challenges in interpreting high-throughput Omics data. The book then describes the relationships between data mining and related areas of computing, including knowledge representation, information retrieval, and data integration for structured and unstructured biological data. The last part explores emerging data mining opportunities for biomedical applications. This volume examines the concepts, problems, progress, and trends in developing and applying new data mining techniques to the rapidly growing field of genome biology. By studying the concepts and case studies presented, readers will gain significant insight and develop practical solutions for similar biological data mining projects in the future.

Biological Data Mining and Its Applications in Healthcare

Author : Xiaoli Li
File Size : 65.53 MB
Format : PDF, Docs
Download : 729
Read : 1049
Download »
Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to disease pathways and electronic health records. To exploit these data for discovering new knowledge that can be translated into clinical applications, there are fundamental data analysis difficulties that have to be overcome. Practical issues such as handling noisy and incomplete data, processing compute-intensive tasks, and integrating various data sources, are new challenges faced by biologists in the post-genome era. This book will cover the fundamentals of state-of-the-art data mining techniques which have been designed to handle such challenging data analysis problems, and demonstrate with real applications how biologists and clinical scientists can employ data mining to enable them to make meaningful observations and discoveries from a wide array of heterogeneous data from molecular biology to pharmaceutical and clinical domains. Contents:Sequence Analysis:Mining the Sequence Databases for Homology Detection: Application to Recognition of Functions of Trypanosoma brucei brucei Proteins and Drug Targets (G Ramakrishnan, V S Gowri, R Mudgal, N R Chandra and N Srinivasan)Identification of Genes and Their Regulatory Regions Based on Multiple Physical and Structural Properties of a DNA Sequence (Xi Yang, Nancy Yu Song and Hong Yan)Mining Genomic Sequence Data for Related Sequences Using Pairwise Statistical Significance (Yuhong Zhang and Yunbo Rao)Biological Network Mining:Indexing for Similarity Queries on Biological Networks (Günhan Gülsoy, Md Mahmudul Hasan, Yusuf Kavurucu and Tamer Kahveci)Theory and Method of Completion for a Boolean Regulatory Network Using Observed Data (Takeyuki Tamura and Tatsuya Akutsu)Mining Frequent Subgraph Patterns for Classifying Biological Data (Saeed Salem)On the Integration of Prior Knowledge in the Inference of Regulatory Networks (Catharina Olsen, Benjamin Haibe-Kains, John Quackenbush and Gianluca Bontempi)Classification, Trend Analysis and 3D Medical Images:Classification and Its Application to Drug-Target Prediction (Jian-Ping Mei, Chee-Keong Kwoh, Peng Yang and Xiao-Li Li)Characterization and Prediction of Human Protein-Protein Interactions (Yi Xiong, Dan Syzmanski and Daisuke Kihara)Trend Analysis (Wen-Chuan Xie, Miao He and Jake Yue Chen)Data Acquisition and Preprocessing on Three Dimensional Medical Images (Yuhua Jiao, Liang Chen and Jin Chen)Text Mining and Its Biomedical Applications:Text Mining in Biomedicine and Healthcare (Hong-Jie Dai, Chi-Yang Wu, Richard Tzong-Han Tsai and Wen-Lian Hsu)Learning to Rank Biomedical Documents with Only Positive and Unlabeled Examples: A Case Study (Mingzhu Zhu, Yi-Fang Brook Wu, Meghana Samir Vasavada and Jason T L Wang)Automated Mining of Disease-Specific Protein Interaction Networks Based on Biomedical Literature (Rajesh Chowdhary, Boris R Jankovic, Rachel V Stankowski, John A C Archer, Xiangliang Zhang, Xin Gao, Vladimir B Bajic) Readership: Students, professionals, those who perform biological, medical and bioinformatics research. Keywords:Healthcare;Data Mining;Biological Data Mining;Protein Interactions;Gene Regulation;Text Mining;Biological Literature Mining;Drug Discovery;Disease Network;Biological Network;Graph Mining;Sequence Analysis;Structure Analysis;Trend Analysis;Medical ImagesKey Features:Each chapter of this book will include a section to introduce a specific class of data mining techniques, which will be written in a tutorial style so that even non-computational readers such as biologists and healthcare researchers can appreciate themThe book will disseminate the impact research results and best practices of data mining approaches to the cross-disciplinary researchers and practitioners from both the data mining disciplines and the life sciences domains. The authors of the book will be well-known data mining experts, bioinformaticians and cliniciansEach chapter will also provide a detailed description on how to apply the data mining techniques in real-world biological and clinical applications. Thus, readers of this book can easily appreciate the computational techniques and how they can be used to address their own research issues

Data Mining for Genomics and Proteomics

Author : Darius M. Dziuda
File Size : 59.68 MB
Format : PDF, ePub, Docs
Download : 623
Read : 772
Download »
Data Mining for Genomics and Proteomics uses pragmatic examples and a complete case study to demonstrate step-by-step how biomedical studies can be used to maximize the chance of extracting new and useful biomedical knowledge from data. It is an excellent resource for students and professionals involved with gene or protein expression data in a variety of settings.

Handbook of Statistical Analysis and Data Mining Applications

Author : Robert Nisbet
File Size : 59.96 MB
Format : PDF, ePub, Docs
Download : 997
Read : 874
Download »
This comprehensive professional reference for scientists, engineers, and researchers brings together in a single resource all the information a beginner will need to rapidly learn how to conduct data mining and the statistical analysis required to interpret the data once mined. A glossary of data mining terms provided in the appendix.

Data Mining in Medical and Biological Research

Author : Eugenia Giannopoulou
File Size : 84.13 MB
Format : PDF, Mobi
Download : 947
Read : 369
Download »
This book intends to bring together the most recent advances and applications of data mining research in the promising areas of medicine and biology from around the world. It consists of seventeen chapters, twelve related to medical research and five focused on the biological domain, which describe interesting applications, motivating progress and worthwhile results. We hope that the readers will benefit from this book and consider it as an excellent way to keep pace with the vast and diverse advances of new research efforts.

Rechnergest tzte Konstruktionsarbeit

Author : Siegfried Schreuder
File Size : 39.97 MB
Format : PDF
Download : 775
Read : 1064
Download »

Weighted Network Analysis

Author : Steve Horvath
File Size : 85.36 MB
Format : PDF
Download : 376
Read : 1267
Download »
High-throughput measurements of gene expression and genetic marker data facilitate systems biologic and systems genetic data analysis strategies. Gene co-expression networks have been used to study a variety of biological systems, bridging the gap from individual genes to biologically or clinically important emergent phenotypes.

Knowledge Discovery in Bioinformatics

Author : Xiaohua Hu
File Size : 81.27 MB
Format : PDF, ePub, Mobi
Download : 241
Read : 1175
Download »
The purpose of this edited book is to bring together the ideas and findings of data mining researchers and bioinformaticians by discussing cutting-edge research topics such as, gene expressions, protein/RNA structure prediction, phylogenetics, sequence and structural motifs, genomics and proteomics, gene findings, drug design, RNAi and microRNA analysis, text mining in bioinformatics, modelling of biochemical pathways, biomedical ontologies, system biology and pathways, and biological database management.

Practical Text Mining and Statistical Analysis for Non structured Text Data Applications

Author : Gary Miner
File Size : 82.20 MB
Format : PDF
Download : 594
Read : 669
Download »
The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. This comprehensive professional reference brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. The Handbook of Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications presents a comprehensive how- to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities. -Extensive case studies, most in a tutorial format, allow the reader to 'click through' the example using a software program, thus learning to conduct text mining analyses in the most rapid manner of learning possible -Numerous examples, tutorials, power points and datasets available via companion website on Elsevierdirect.com -Glossary of text mining terms provided in the appendix

Pharmaceutical Data Mining

Author : Konstantin V. Balakin
File Size : 36.43 MB
Format : PDF, Kindle
Download : 439
Read : 777
Download »
Leading experts illustrate how sophisticated computational data mining techniques can impact contemporary drug discovery and development In the era of post-genomic drug development, extracting and applying knowledge from chemical, biological, and clinical data is one of the greatest challenges facing the pharmaceutical industry. Pharmaceutical Data Mining brings together contributions from leading academic and industrial scientists, who address both the implementation of new data mining technologies and application issues in the industry. This accessible, comprehensive collection discusses important theoretical and practical aspects of pharmaceutical data mining, focusing on diverse approaches for drug discovery—including chemogenomics, toxicogenomics, and individual drug response prediction. The five main sections of this volume cover: A general overview of the discipline, from its foundations to contemporary industrial applications Chemoinformatics-based applications Bioinformatics-based applications Data mining methods in clinical development Data mining algorithms, technologies, and software tools, with emphasis on advanced algorithms and software that are currently used in the industry or represent promising approaches In one concentrated reference, Pharmaceutical Data Mining reveals the role and possibilities of these sophisticated techniques in contemporary drug discovery and development. It is ideal for graduate-level courses covering pharmaceutical science, computational chemistry, and bioinformatics. In addition, it provides insight to pharmaceutical scientists, principal investigators, principal scientists, research directors, and all scientists working in the field of drug discovery and development and associated industries.

Knowledge Oriented Applications in Data Mining

Author : Kimito Funatsu
File Size : 83.41 MB
Format : PDF
Download : 260
Read : 721
Download »
The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by 'Data Mining' address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining.

Big Data Analytics in Genomics

Author : Ka-Chun Wong
File Size : 68.12 MB
Format : PDF, Mobi
Download : 907
Read : 171
Download »
This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.

Soft Computing for Data Mining Applications

Author : K. R. Venugopal
File Size : 50.76 MB
Format : PDF
Download : 406
Read : 888
Download »
The authors have consolidated their research work in this volume titled Soft Computing for Data Mining Applications. The monograph gives an insight into the research in the ?elds of Data Mining in combination with Soft Computing methodologies. In these days, the data continues to grow - ponentially. Much of the data is implicitly or explicitly imprecise. Database discovery seeks to discover noteworthy, unrecognized associations between the data items in the existing database. The potential of discovery comes from the realization that alternate contexts may reveal additional valuable information. The rate at which the data is storedis growing at a phenomenal rate. Asaresult,traditionaladhocmixturesofstatisticaltechniquesanddata managementtools are no longer adequate for analyzing this vast collection of data. Severaldomainswherelargevolumesofdataarestoredincentralizedor distributeddatabasesincludesapplicationslikeinelectroniccommerce,bio- formatics, computer security, Web intelligence, intelligent learning database systems,?nance,marketing,healthcare,telecommunications,andother?elds. E?cient tools and algorithms for knowledge discovery in large data sets have been devised during the recent years. These methods exploit the ca- bility of computers to search huge amounts of data in a fast and e?ective manner. However,the data to be analyzed is imprecise and a?icted with - certainty. In the case of heterogeneous data sources such as text and video, the data might moreover be ambiguous and partly con?icting. Besides, p- terns and relationships of interest are usually approximate. Thus, in order to make the information mining process more robust it requires tolerance toward imprecision, uncertainty and exceptions.

Bioinformatics Technologies

Author : Yi-Ping Phoebe Chen
File Size : 49.87 MB
Format : PDF, ePub, Docs
Download : 324
Read : 1309
Download »
Introductio to bioinformatics. Overview of structural bioinformatics. Database warehousing in bioinformatics. Modeling for bioinformatics. Pattern matching for motifs. Visualization and fractal analysis of biological sequences. Microarray data analysis.