Search Results for "data-mining-and-predictive-analytics-wiley-series-on-methods-and-applications-in-data-mining"

Data Mining and Predictive Analytics

Data Mining and Predictive Analytics

  • Author: Daniel T. Larose
  • Publisher: John Wiley & Sons
  • ISBN: 1118868706
  • Category: Computers
  • Page: 824
  • View: 3220
DOWNLOAD NOW »
Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.

Discovering Knowledge in Data

Discovering Knowledge in Data

An Introduction to Data Mining

  • Author: Daniel T. Larose,Chantal D. Larose
  • Publisher: John Wiley & Sons
  • ISBN: 1118873572
  • Category: Computers
  • Page: 336
  • View: 8736
DOWNLOAD NOW »
The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website for university instructors who adopt the book

Data Science Using Python and R

Data Science Using Python and R

  • Author: Chantal D. Larose,Daniel T. Larose
  • Publisher: Wiley
  • ISBN: 1119526817
  • Category: Computers
  • Page: 240
  • View: 704
DOWNLOAD NOW »
Learn data science by doing data science! Data Science Using Python and R will get you plugged into the world’s two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist “the hottest job in America.” Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R. Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naïve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining. Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars. Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.

Applied Data Mining for Business and Industry

Applied Data Mining for Business and Industry

  • Author: Paolo Giudici,Silvia Figini
  • Publisher: John Wiley & Sons
  • ISBN: 0470058862
  • Category: Computers
  • Page: 249
  • View: 6836
DOWNLOAD NOW »
This new edition sees the inclusion of 70% new material, including eight new case studies, that brings this best selling title up to date with the many advances made in the field since its original publication. In the text all the methods described are either computational or of a statistical modelling nature; complex probabilistic models and mathematical tools are not used, so the book is accessible to a wide audience of both students and industry professionals.

Data Mining for Business Analytics

Data Mining for Business Analytics

Concepts, Techniques, and Applications with JMP Pro

  • Author: Galit Shmueli,Peter C. Bruce,Mia L. Stephens,Nitin R. Patel
  • Publisher: John Wiley & Sons
  • ISBN: 1118877527
  • Category: Mathematics
  • Page: 464
  • View: 2131
DOWNLOAD NOW »
Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® presents an applied and interactive approach to data mining. Featuring hands-on applications with JMP Pro®, a statistical package from the SAS Institute, the book uses engaging, real-world examples to build a theoretical and practical understanding of key data mining methods, especially predictive models for classification and prediction. Topics include data visualization, dimension reduction techniques, clustering, linear and logistic regression, classification and regression trees, discriminant analysis, naive Bayes, neural networks, uplift modeling, ensemble models, and time series forecasting. Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® also includes: Detailed summaries that supply an outline of key topics at the beginning of each chapter End-of-chapter examples and exercises that allow readers to expand their comprehension of the presented material Data-rich case studies to illustrate various applications of data mining techniques A companion website with over two dozen data sets, exercises and case study solutions, and slides for instructors www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® is an excellent textbook for advanced undergraduate and graduate-level courses on data mining, predictive analytics, and business analytics. The book is also a one-of-a-kind resource for data scientists, analysts, researchers, and practitioners working with analytics in the fields of management, finance, marketing, information technology, healthcare, education, and any other data-rich field.

Making Sense of Data II

Making Sense of Data II

A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications

  • Author: Glenn J. Myatt,Wayne P. Johnson
  • Publisher: John Wiley & Sons
  • ISBN: 9780470417393
  • Category: Mathematics
  • Page: 308
  • View: 8462
DOWNLOAD NOW »
A hands-on guide to making valuable decisions from data using advanced data mining methods and techniques This second installment in the Making Sense of Data series continues to explore a diverse range of commonly used approaches to making and communicating decisions from data. Delving into more technical topics, this book equips readers with advanced data mining methods that are needed to successfully translate raw data into smart decisions across various fields of research including business, engineering, finance, and the social sciences. Following a comprehensive introduction that details how to define a problem, perform an analysis, and deploy the results, Making Sense of Data II addresses the following key techniques for advanced data analysis: Data Visualization reviews principles and methods for understanding and communicating data through the use of visualization including single variables, the relationship between two or more variables, groupings in data, and dynamic approaches to interacting with data through graphical user interfaces. Clustering outlines common approaches to clustering data sets and provides detailed explanations of methods for determining the distance between observations and procedures for clustering observations. Agglomerative hierarchical clustering, partitioned-based clustering, and fuzzy clustering are also discussed. Predictive Analytics presents a discussion on how to build and assess models, along with a series of predictive analytics that can be used in a variety of situations including principal component analysis, multiple linear regression, discriminate analysis, logistic regression, and Naïve Bayes. Applications demonstrates the current uses of data mining across a wide range of industries and features case studies that illustrate the related applications in real-world scenarios. Each method is discussed within the context of a data mining process including defining the problem and deploying the results, and readers are provided with guidance on when and how each method should be used. The related Web site for the series (www.makingsenseofdata.com) provides a hands-on data analysis and data mining experience. Readers wishing to gain more practical experience will benefit from the tutorial section of the book in conjunction with the TraceisTM software, which is freely available online. With its comprehensive collection of advanced data mining methods coupled with tutorials for applications in a range of fields, Making Sense of Data II is an indispensable book for courses on data analysis and data mining at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals who are interested in learning how to accomplish effective decision making from data and understanding if data analysis and data mining methods could help their organization.

Applied Predictive Analytics

Applied Predictive Analytics

Principles and Techniques for the Professional Data Analyst

  • Author: Dean Abbott
  • Publisher: John Wiley & Sons
  • ISBN: 111872769X
  • Category: Computers
  • Page: 456
  • View: 7835
DOWNLOAD NOW »
Learn the art and science of predictive analytics —techniques that get results Predictive analytics is what translates big data intomeaningful, usable business information. Written by a leadingexpert in the field, this guide examines the science of theunderlying algorithms as well as the principles and best practicesthat govern the art of predictive analytics. It clearly explainsthe theory behind predictive analytics, teaches the methods,principles, and techniques for conducting predictive analyticsprojects, and offers tips and tricks that are essential forsuccessful predictive modeling. Hands-on examples and case studiesare included. The ability to successfully apply predictive analytics enablesbusinesses to effectively interpret big data; essential forcompetition today This guide teaches not only the principles of predictiveanalytics, but also how to apply them to achieve real, pragmaticsolutions Explains methods, principles, and techniques for conductingpredictive analytics projects from start to finish Illustrates each technique with hands-on examples and includesas series of in-depth case studies that apply predictive analyticsto common business scenarios A companion website provides all the data sets used to generatethe examples as well as a free trial version of software Applied Predictive Analytics arms data and businessanalysts and business managers with the tools they need tointerpret and capitalize on big data.

PROCEEDINGS OF THE XIV INTERNATIONAL SYMPOSIUM SYMORG 2014

PROCEEDINGS OF THE XIV INTERNATIONAL SYMPOSIUM SYMORG 2014

NEW BUSINESS MODELS AND SUSTAINABLE COMPETITIVENESS

  • Author: Aleksandar Marković,Slađana Barjaktarović Rakočević
  • Publisher: FON
  • ISBN: 8676802955
  • Category: Business & Economics
  • Page: 1795
  • View: 5766
DOWNLOAD NOW »

Predictive Analytics, Data Mining and Big Data

Predictive Analytics, Data Mining and Big Data

Myths, Misconceptions and Methods

  • Author: S. Finlay
  • Publisher: Springer
  • ISBN: 1137379286
  • Category: Business & Economics
  • Page: 260
  • View: 7980
DOWNLOAD NOW »
This in-depth guide provides managers with a solid understanding of data and data trends, the opportunities that it can offer to businesses, and the dangers of these technologies. Written in an accessible style, Steven Finlay provides a contextual roadmap for developing solutions that deliver benefits to organizations.

Modeling Techniques in Predictive Analytics with Python and R

Modeling Techniques in Predictive Analytics with Python and R

A Guide to Data Science

  • Author: Thomas W. Miller
  • Publisher: FT Press
  • ISBN: 013389214X
  • Category: Computers
  • Page: 448
  • View: 7329
DOWNLOAD NOW »
Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more