Search results for: data-mining-methods-for-knowledge-discovery

Data Mining Methods for Knowledge Discovery

Author : Krzysztof J. Cios
File Size : 84.40 MB
Format : PDF, Kindle
Download : 632
Read : 1298
Download »
Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.

Mathematical Methods for Knowledge Discovery and Data Mining

Author : Felici, Giovanni
File Size : 55.79 MB
Format : PDF, Mobi
Download : 971
Read : 434
Download »
"This book focuses on the mathematical models and methods that support most data mining applications and solution techniques, covering such topics as association rules; Bayesian methods; data visualization; kernel methods; neural networks; text, speech, and image recognition; an invaluable resource for scholars and practitioners in the fields of biomedicine, engineering, finance, manufacturing, marketing, performance measurement, and telecommunications"--Provided by publisher.

Biologically Inspired Techniques for Knowledge Discovery and Data Mining

Author : Alam, Shafiq
File Size : 37.82 MB
Format : PDF, ePub, Docs
Download : 314
Read : 913
Download »
Biologically-inspired data mining has a wide variety of applications in areas such as data clustering, classification, sequential pattern mining, and information extraction in healthcare and bioinformatics. Over the past decade, research materials in this area have dramatically increased, providing clear evidence of the popularity of these techniques. Biologically-Inspired Techniques for Knowledge Discovery and Data Mining exemplifies prestigious research and shares the practices that have allowed these areas to grow and flourish. This essential reference publication highlights contemporary findings in the area of biologically-inspired techniques in data mining domains and their implementation in real-life problems. Providing quality work from established researchers, this publication serves to extend existing knowledge within the research communities of data mining and knowledge discovery, as well as for academicians and students in the field.

Advances in Data Mining

Author : Petra Perner
File Size : 33.2 MB
Format : PDF, Docs
Download : 259
Read : 988
Download »
This book presents papers describing selected projects on the topic of data mining in fields like e commerce, medicine, and knowledge management. The objective is to report on current results and at the same time to give a review on the present activities in this field in Germany. An effort has been made to include the latest scientific results, as well as lead the reader to the various fields of activity and the problems related to them. Knowledge discovery on the basis of web data is a wide and fast growing area. E commerce is the principal theme of motivation in this field, as companies invest large sums in the electronic market, in order to maximize their profits and minimize their risks. Other applications are telelearning, teleteaching, service support, and citizen information systems. Concerning these applications, there is a great need to understand and support the user by means of recommendation systems, adaptive information systems, as well as by personalization. In this respect Giudici and Blanc present in their paper procedures for the generation of associative models from the tracking behavior of the user. Perner and Fiss present in their paper a strategy for intelligent e marketing with web mining and personalization. Methods and procedures for the generation of associative rules are presented in the paper by Hipp, Güntzer, and Nakhaeidizadeh.

Data Mining Methods for Knowledge Discovery

Author : Krzysztof J. Cios
File Size : 88.16 MB
Format : PDF, ePub, Mobi
Download : 643
Read : 937
Download »
Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.

Data Mining and Knowledge Discovery with Evolutionary Algorithms

Author : Alex A. Freitas
File Size : 90.86 MB
Format : PDF, Kindle
Download : 805
Read : 1226
Download »
This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics

Advanced Methods for Knowledge Discovery from Complex Data

Author : Ujjwal Maulik
File Size : 52.65 MB
Format : PDF, ePub
Download : 303
Read : 177
Download »
The growth in the amount of data collected and generated has exploded in recent times with the widespread automation of various day-to-day activities, advances in high-level scienti?c and engineering research and the development of e?cient data collection tools. This has given rise to the need for automa- callyanalyzingthedatainordertoextractknowledgefromit,therebymaking the data potentially more useful. Knowledge discovery and data mining (KDD) is the process of identifying valid, novel, potentially useful and ultimately understandable patterns from massive data repositories. It is a multi-disciplinary topic, drawing from s- eral ?elds including expert systems, machine learning, intelligent databases, knowledge acquisition, case-based reasoning, pattern recognition and stat- tics. Many data mining systems have typically evolved around well-organized database systems (e.g., relational databases) containing relevant information. But, more and more, one ?nds relevant information hidden in unstructured text and in other complex forms. Mining in the domains of the world-wide web, bioinformatics, geoscienti?c data, and spatial and temporal applications comprise some illustrative examples in this regard. Discovery of knowledge, or potentially useful patterns, from such complex data often requires the - plication of advanced techniques that are better able to exploit the nature and representation of the data. Such advanced methods include, among o- ers, graph-based and tree-based approaches to relational learning, sequence mining, link-based classi?cation, Bayesian networks, hidden Markov models, neural networks, kernel-based methods, evolutionary algorithms, rough sets and fuzzy logic, and hybrid systems. Many of these methods are developed in the following chapters.

Principles of Data Mining and Knowledge Discovery

Author : Luc de Raedt
File Size : 82.51 MB
Format : PDF
Download : 720
Read : 1110
Download »
This book constitutes the refereed proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery, PKDD 2001, held in Freiburg, Germany, in September 2001. The 40 revised full papers presented together with four invited contributions were carefully reviewed and selected from close to 100 submissions. Among the topics addressed are hidden Markov models, text summarization, supervised learning, unsupervised learning, demographic data analysis, phenotype data mining, spatio-temporal clustering, Web-usage analysis, association rules, clustering algorithms, time series analysis, rule discovery, text categorization, self-organizing maps, filtering, reinforcemant learning, support vector machines, visual data mining, and machine learning.

Data Mining and Knowledge Discovery Technologies

Author : Taniar, David
File Size : 37.1 MB
Format : PDF
Download : 218
Read : 1212
Download »
As information technology continues to advance in massive increments, the bank of information available from personal, financial, and business electronic transactions and all other electronic documentation and data storage is growing at an exponential rate. With this wealth of information comes the opportunity and necessity to utilize this information to maintain competitive advantage and process information effectively in real-world situations. Data Mining and Knowledge Discovery Technologies presents researchers and practitioners in fields such as knowledge management, information science, Web engineering, and medical informatics, with comprehensive, innovative research on data mining methods, structures, tools, and methods, the knowledge discovery process, and data marts, among many other cutting-edge topics.

Data Mining

Author : Krzysztof J. Cios
File Size : 36.97 MB
Format : PDF, Docs
Download : 928
Read : 605
Download »
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.