Search results for: data-quality-for-the-information-age

Data Quality for the Information Age

Author : Thomas C. Redman
File Size : 80.48 MB
Format : PDF, ePub, Mobi
Download : 745
Read : 335
Download »
All aspects of data management are explored in this title, which provides detailed analyses of quality problems and their impacts, potential solutions and how they are combined to form an overall data quality program, senior management's role, and methods used to make and sustain improvements.

Data Quality

Author : Thomas C. Redman
File Size : 39.99 MB
Format : PDF, Docs
Download : 869
Read : 674
Download »
Can any subject inspire less excitement than "data quality"? Yet a moment's thought reveals the ever-growing importance of quality data. From restated corporate earnings, to incorrect prices on the web, to the bombing of the Chinese Embassy, the media reports the impact of poor data quality on a daily basis. Every business operation creates or consumes huge quantities of data. If the data are wrong, time, money, and reputation are lost. In today's environment, every leader, every decision maker, every operational manager, every consumer, indeed everyone has a vested interest in data quality. Data Quality: The Field Guide provides the practical guidance needed to start and advance a data quality program. It motivates interest in data quality, describes the most important data quality problems facing the typical organization, and outlines what an organization must do to improve. It consists of 36 short chapters in an easy-to-use field guide format. Each chapter describes a single issue and how to address it. The book begins with sections that describe why leaders, whether CIOs, CFOs, or CEOs, should be concerned with data quality. It explains the pros and cons of approaches for addressing the issue. It explains what those organizations with the best data do. And it lays bare the social issues that prevent organizations from making headway. "Field tips" at the end of each chapter summarize the most important points. Allows readers to go directly to the topic of interest Provides web-based material so readers can cut and paste figures and tables into documents within their organizations Gives step-by-step instructions for applying most techniques and summarizes what "works"

Information and Database Quality

Author : Mario G. Piattini
File Size : 62.96 MB
Format : PDF, Kindle
Download : 208
Read : 703
Download »
In a global and increasingly competitive market, where organizations are driven by information, the search for ways to transform data into true knowledge is critical to a business's success. Few companies, however, have effective methods of managing the quality of this information. Because quality is a multidimensional concept, its management must consider a wide variety of issues related to information and data quality. Information and Database Quality is a compilation of works from research and industry that examines these issues, covering both the organizational and technical aspects of information and data quality. Information and Database Quality is an excellent reference for both researchers and professionals involved in any aspect of information and database research.

Information Quality

Author : Richard Y Wang
File Size : 59.33 MB
Format : PDF, ePub, Mobi
Download : 617
Read : 696
Download »
Organizations today have access to vast stores of data that come in a wide variety of forms and may be stored in places ranging from file cabinets to databases, and from library shelves to the Internet. The enormous growth in the quantity of data, however, has brought with it growing problems with the quality of information, further complicated by the struggles many organizations are experiencing as they try to improve their systems for knowledge management and organizational memory. Failure to manage information properly, or inaccurate data, costs businesses billions of dollars each year. This volume presents cutting-edge research on information quality. Part I seeks to understand how data can be measured and evaluated for quality. Part II deals with the problem of ensuring quality while processing data into information a company can use. Part III presents case studies, while Part IV explores organizational issues related to information quality. Part V addresses issues in information quality education.

Data Quality Management with Semantic Technologies

Author : Christian Fürber
File Size : 74.32 MB
Format : PDF, ePub, Docs
Download : 611
Read : 733
Download »
Christian Fürber investigates the useful application of semantic technologies for the area of data quality management. Based on a literature analysis of typical data quality problems and typical activities of data quality management processes, he develops the Semantic Data Quality Management framework as the major contribution of this thesis. The SDQM framework consists of three components that are evaluated in two different use cases. Moreover, this thesis compares the framework to conventional data quality software. Besides the framework, this thesis delivers important theoretical findings, namely a comprehensive typology of data quality problems, ten generic data requirement types, a requirement-centric data quality management process, and an analysis of related work.

Data Quality

Author : Richard Y. Wang
File Size : 25.70 MB
Format : PDF, ePub, Mobi
Download : 519
Read : 172
Download »
Data Quality provides an exposé of research and practice in the data quality field for technically oriented readers. It is based on the research conducted at the MIT Total Data Quality Management (TDQM) program and work from other leading research institutions. This book is intended primarily for researchers, practitioners, educators and graduate students in the fields of Computer Science, Information Technology, and other interdisciplinary areas. It forms a theoretical foundation that is both rigorous and relevant for dealing with advanced issues related to data quality. Written with the goal to provide an overview of the cumulated research results from the MIT TDQM research perspective as it relates to database research, this book is an excellent introduction to Ph.D. who wish to further pursue their research in the data quality area. It is also an excellent theoretical introduction to IT professionals who wish to gain insight into theoretical results in the technically-oriented data quality area, and apply some of the key concepts to their practice.

Executing Data Quality Projects

Author : Danette McGilvray
File Size : 70.14 MB
Format : PDF, Mobi
Download : 145
Read : 744
Download »
Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today’s data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization’s standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach Contains real examples from around the world, gleaned from the author’s consulting practice and from those who implemented based on her training courses and the earlier edition of the book Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online

Chinese Authoritarianism in the Information Age

Author : Suisheng Zhao
File Size : 38.33 MB
Format : PDF, Kindle
Download : 844
Read : 534
Download »
This book examines information and public opinion control by the authoritarian state in response to popular access to information and upgraded political communication channels among the citizens in contemporary China. Empowered by mass media, particularly social media and other information technology, Chinese citizen’s access to information has been expanded. Publicly focusing events and opinions have served as catalysts to shape the agenda for policy making and law making, narrow down the set of policy options, and change the pace of policy implementation. Yet, the authoritarian state remains in tight control of media, including social media, to deny the free flow of information and shape public opinion through a centralized institutional framework for propaganda and information technologies. The evolving process of media control and public opinion manipulation has constrained citizen’s political participation and strengthened Chinese authoritarianism in the information age. The chapters originally published as articles in the Journal of Contemporary China.

Data Quality

Author : Jack E. Olson
File Size : 42.45 MB
Format : PDF, ePub, Mobi
Download : 688
Read : 958
Download »
Data Quality: The Accuracy Dimension is about assessing the quality of corporate data and improving its accuracy using the data profiling method. Corporate data is increasingly important as companies continue to find new ways to use it. Likewise, improving the accuracy of data in information systems is fast becoming a major goal as companies realize how much it affects their bottom line. Data profiling is a new technology that supports and enhances the accuracy of databases throughout major IT shops. Jack Olson explains data profiling and shows how it fits into the larger picture of data quality. * Provides an accessible, enjoyable introduction to the subject of data accuracy, peppered with real-world anecdotes. * Provides a framework for data profiling with a discussion of analytical tools appropriate for assessing data accuracy. * Is written by one of the original developers of data profiling technology. * Is a must-read for any data management staff, IT management staff, and CIOs of companies with data assets.

Principles of Data Quality

Author : Arthur D. Chapman
File Size : 65.29 MB
Format : PDF, Docs
Download : 575
Read : 417
Download »