Search results for: deep-learning-in-quantitative-finance

An Introduction to Machine Learning in Quantitative Finance

Author : Hao Ni
File Size : 30.56 MB
Format : PDF, ePub
Download : 357
Read : 1111
Download »
In today's world, we are increasingly exposed to the words "machine learning" (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it. An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authors Provide a systematic and rigorous introduction to supervised, unsupervised and reinforcement learning by establishing essential definitions and theorems. Dive into various types of neural networks, including artificial nets, convolutional nets, recurrent nets and recurrent reinforcement learning. Summarize key contents of each section in the tables as a cheat sheet. Include ample examples of financial applications. Showcase how to tackle an exemplar ML project on financial data end-to-end. Supplement Python codes of all the methods/examples in a GitHub repository. Featured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data! The Python codes contained within An Introduction to Machine Learning in Quantitative Finance have been made publicly available on the author's GitHub: https: //github.com/deepintomlf/mlfbook.git

Big Data and Machine Learning in Quantitative Investment

Author : Tony Guida
File Size : 20.8 MB
Format : PDF, ePub, Mobi
Download : 446
Read : 634
Download »
Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.

An Introduction To Machine Learning In Quantitative Finance

Author : Hao Ni
File Size : 60.22 MB
Format : PDF
Download : 456
Read : 194
Download »
In today's world, we are increasingly exposed to the words 'machine learning' (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it.An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authorsFeatured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!

Machine Learning in Finance

Author : Matthew F. Dixon
File Size : 85.11 MB
Format : PDF, Kindle
Download : 396
Read : 468
Download »
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.

Deep Learning in Quantitative Finance

Author : Andrew Green
File Size : 74.65 MB
Format : PDF, ePub, Docs
Download : 978
Read : 962
Download »
Deep learning, that is the use of deep neural networks, is now one of the hottest topics amongst quantitative analysts. This book provides a comprehensive treatment of deep learning and a wide range of applications in mainstream quantitative finance. The book introduces the basics of neural networks including feedforward networks, optimization and training and regularization techniques, before proceeding to cover more advanced topics including CNNs, RNNs, autoencoders, generative models and deep reinforcement learning. The main software frameworks, Tensorflow and Pytorch, are introduced and discussed, along with a number of others. The book then proceeds to cover the very latest deep learning research in quantitative finance, including approximating derivative values, high dimensional PDE solvers and BSDEs, volatility models and model calibration, credit curve mapping for XVA, generating realistic market data, order book management and hedging using reinforcement learning. The book concludes with a look at the potential for quantum deep learning and the broader implications deep learning has for quantitative finance and quantitative analysts.

Machine Learning in Quantitative Finance History Theory and Applications

Author : Mcghee
File Size : 78.54 MB
Format : PDF, Mobi
Download : 463
Read : 862
Download »

Machine Learning and AI in Finance

Author : German Creamer
File Size : 42.3 MB
Format : PDF, ePub, Mobi
Download : 978
Read : 732
Download »
The significant amount of information available in any field requires a systematic and analytical approach to select the most critical information and anticipate major events. During the last decade, the world has witnessed a rapid expansion of applications of artificial intelligence (AI) and machine learning (ML) algorithms to an increasingly broad range of financial markets and problems. Machine learning and AI algorithms facilitate this process understanding, modelling and forecasting the behaviour of the most relevant financial variables. The main contribution of this book is the presentation of new theoretical and applied AI perspectives to find solutions to unsolved finance questions. This volume proposes an optimal model for the volatility smile, for modelling high-frequency liquidity demand and supply and for the simulation of market microstructure features. Other new AI developments explored in this book includes building a universal model for a large number of stocks, developing predictive models based on the average price of the crowd, forecasting the stock price using the attention mechanism in a neural network, clustering multivariate time series into different market states, proposing a multivariate distance nonlinear causality test and filtering out false investment strategies with an unsupervised learning algorithm. Machine Learning and AI in Finance explores the most recent advances in the application of innovative machine learning and artificial intelligence models to predict financial time series, to simulate the structure of the financial markets, to explore nonlinear causality models, to test investment strategies and to price financial options. The chapters in this book were originally published as a special issue of the Quantitative Finance journal.

An Introduction to Machine Learning in Quantitative Finance

Author : Hao Ni, (le
File Size : 52.10 MB
Format : PDF, Mobi
Download : 873
Read : 1309
Download »

Learning Quantitative Finance with R

Author : Dr Param Jeet
File Size : 60.27 MB
Format : PDF, Kindle
Download : 366
Read : 540
Download »
Implement machine learning, time-series analysis, algorithmic trading and moreAbout This Book- Understand the basics of R and how they can be applied in various Quantitative Finance scenarios- Learn various algorithmic trading techniques and ways to optimize them using the tools available in R.- Contain different methods to manage risk and explore trading using Machine Learning.Who This Book Is ForIf you want to learn how to use R to build quantitative finance models with ease, this book is for you. Analysts who want to learn R to solve their quantitative finance problems will also find this book useful. Some understanding of the basic financial concepts will be useful, though prior knowledge of R is not required.What You Will Learn- Get to know the basics of R and how to use it in the field of Quantitative Finance- Understand data processing and model building using R- Explore different types of analytical techniques such as statistical analysis, time-series analysis, predictive modeling, and econometric analysis- Build and analyze quantitative finance models using real-world examples- How real-life examples should be used to develop strategies- Performance metrics to look into before deciding upon any model- Deep dive into the vast world of machine-learning based trading- Get to grips with algorithmic trading and different ways of optimizing it- Learn about controlling risk parameters of financial instrumentsIn DetailThe role of a quantitative analyst is very challenging, yet lucrative, so there is a lot of competition for the role in top-tier organizations and investment banks. This book is your go-to resource if you want to equip yourself with the skills required to tackle any real-world problem in quantitative finance using the popular R programming language.You'll start by getting an understanding of the basics of R and its relevance in the field of quantitative finance. Once you've built this foundation, we'll dive into the practicalities of building financial models in R. This will help you have a fair understanding of the topics as well as their implementation, as the authors have presented some use cases along with examples that are easy to understand and correlate.We'll also look at risk management and optimization techniques for algorithmic trading. Finally, the book will explain some advanced concepts, such as trading using machine learning, optimizations, exotic options, and hedging.By the end of this book, you will have a firm grasp of the techniques required to implement basic quantitative finance models in R.Style and approachThis book introduces you to the essentials of quantitative finance with the help of easy-to-understand, practical examples and use cases in R. Each chapter presents a specific financial concept in detail, backed with relevant theory and the implementation of a real-life example.

Financial Signal Processing and Machine Learning

Author : Ali N. Akansu
File Size : 82.33 MB
Format : PDF, ePub, Mobi
Download : 919
Read : 234
Download »
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.