Search results for: direct-and-inverse-problems

Direct and Inverse Problems

Author : Boris N. Zakhariev
File Size : 37.45 MB
Format : PDF, Docs
Download : 361
Read : 1288
Download »
Rapid progress in quantum theory brings us new important results which are often not immediately clear to all who need them. But fortunately, this is also followed by simplifications and unifications of our previous concepts. The inverse problem method ("The most beautiful idea of the XX-th century" - Zakharov et aI., 1980) has just both these aspects. It is rather astonishing that it took 50 years after the foundation of quantum mechanics for the creation of the "pictures" showing the direct connection of obser vables with interactions. Recently, illustrations of this type began to appear in the literature (e. g., how potentials are deformed with thc shift of one energy level or change of some resonance reduced width). Although they are transparent to those studying the quantum world and can be included within the necessary elements of quantum literacy, they are still largely unknown even to many specialists. For the first time, the most interesting of these pictures enriching our quantum intuition are col lected here and placed at your disposal. The readers of this monograph have the advantage of getting the latest information which became available after the publication of the Russian edition. It has been incor porated here in the simplest presentation possible. For example, new sections con cerning exactly solvable models, including the multi-channel, multi-dimensional ones and with time dependent potentials have been added. The first attempts in solving the three-body inverse problem are also mentioned.

Direct and Inverse Problems of Mathematical Physics

Author : R.P. Gilbert
File Size : 38.24 MB
Format : PDF, ePub
Download : 236
Read : 368
Download »
This volume consists of papers presented in the special sessions on "Wave Phenomena and Related Topics", and "Asymptotics and Homogenization" of the ISAAC'97 Congress held at the University of Delaware, during June 2-7, 1997. The ISAAC Congress coincided with a U.S.-Japan Seminar also held at the University of Delaware. The latter was supported by the National Science Foundation through Grant INT -9603029 and the Japan Society for the Promotion of Science through Grant MTCS-134. It was natural that the 'participants of both meetings should interact and consequently several persons attending the Congress also presented papers in the Seminar. The success of the ISAAC Congress and the U.S.-Japan Seminar has led to the ISAAC'99 Congress being held in Fukuoka, Japan during August 1999. Many of the same participants will return to this Seminar. Indeed, it appears that the spirit of the U.S.-Japan Seminar will be continued every second year as part of the ISAAC Congresses. We decided to include with the papers presented in the ISAAC Congress and the U.S.-Japan Seminar several very good papers by colleagues from the former Soviet Union. These participants in the ISAAC Congress attended at their own expense. This volume has the title Direct and Inverse Problems of Mathematical Physics which consists of the papers on scattering theory, coefficient identification, uniqueness and existence theorems, boundary controllability, wave propagation in stratified media, viscous flows, nonlinear acoustics, Sobolev spaces, singularity theory, pseudo differential operators, and semigroup theory.

Forward and Inverse Problems for Hyperbolic Elliptic and Mixed Type Equations

Author : Alexander G. Megrabov
File Size : 85.94 MB
Format : PDF, ePub
Download : 615
Read : 706
Download »
Inverse problems are an important and rapidly developing direction in mathematics,mathematical physics, differential equations, and various applied technologies (geophysics, optic, tomography, remote sensing, radar-location, etc.). In this monographdirect and inverse problems for partial differential equations are considered. The type of equations focusedare hyperbolic, elliptic, and mixed (elliptic-hyperbolic). The direct problems arise as generalizations of problems of scattering plane elastic or acoustic waves from inhomogeneous layer (or from half-space). The inverse problems are those of determination ofmedium parameters by giving the forms of incident and reflected waves or the vibrations of certain points of the medium. The method of researchof all inverse problems is spectral-analytical, consisting in reducing the considered inverse problems to the known inverse problems for the Sturm-Liouville equation or the string equation. Besides the book considers discrete inverse problems. In these problems an arbitrary set of point sources (emissive sources, oscillators, point masses) is determined.

Inverse Problems of Mathematical Physics

Author : Vladimir Gavrilovich Romanov
File Size : 22.14 MB
Format : PDF, ePub, Docs
Download : 609
Read : 384
Download »

One Dimensional Inverse Problems of Mathematical Physics

Author : Mikhail Mikhailovich Lavrentev
File Size : 60.58 MB
Format : PDF, Mobi
Download : 934
Read : 1254
Download »
This monograph deals with the inverse problems of determining a variable coefficient and right side for hyperbolic and parabolic equations on the basis of known solutions at fixed points of space for all times. The problems are one-dimensional in nature since the desired coefficient of the equation is a function of only one coordinate, while the desired right side is a function only of time. The authors use methods based on the spectral theory of ordinary differential operators of second order and also methods which make it possible to reduce the investigation of the inverse problems to the investigation of nonlinear operator equations. The problems studied have applied importance, since they are models for interpreting data of geophysical prospecting by seismic and electric means. In the first chapter the authors prove the one-to-one correspondence between solutions of direct Cauchy problems for equations of different types, and they present the solution of an inverse problem of heat conduction. In the second chapter they consider a second-order hyperbolic equation describing a wave process in three-dimensional half-space. The third chapter investigates formulations of one-dimensional inverse problems for the wave equation in multidimensional space.

Solving Direct and Inverse Heat Conduction Problems

Author : Jan Taler
File Size : 82.72 MB
Format : PDF, ePub
Download : 403
Read : 429
Download »
This book presents a solution for direct and inverse heat conduction problems, discussing the theoretical basis for the heat transfer process and presenting selected theoretical and numerical problems in the form of exercises with solutions. The book covers one-, two- and three dimensional problems which are solved by using exact and approximate analytical methods and numerical methods. An accompanying CD-Rom includes computational solutions of the examples and extensive FORTRAN code.

Introduction to Inverse Problems in Imaging

Author : M. Bertero
File Size : 41.13 MB
Format : PDF, Mobi
Download : 932
Read : 790
Download »
This is a graduate textbook on the principles of linear inverse problems, methods of their approximate solution, and practical application in imaging. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of readers from different backgrounds in science and engineering. Mathematical prerequisites are first courses in analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms. With examples and exercises throughout, the book will provide the reader with the appropriate background for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems.

Inverse Problems

Author : Charles W. Groetsch
File Size : 81.51 MB
Format : PDF, ePub, Mobi
Download : 370
Read : 654
Download »
Discusses the direction in which the field of differential equations, and its teaching, is going.

Numerical Methods for Inverse Problems

Author : Michel Kern
File Size : 90.38 MB
Format : PDF, Docs
Download : 286
Read : 1141
Download »
This book studies methods to concretely address inverse problems. An inverse problem arises when the causes that produced a given effect must be determined or when one seeks to indirectly estimate the parameters of a physical system. The author uses practical examples to illustrate inverse problems in physical sciences. He presents the techniques and specific methods chosen to solve inverse problems in a general domain of application, choosing to focus on a small number of methods that can be used in most applications. This book is aimed at readers with a mathematical and scientific computing background. Despite this, it is a book with a practical perspective. The methods described are applicable, have been applied, and are often illustrated by numerical examples.

An Introduction to Inverse Problems with Applications

Author : Francisco Duarte Moura Neto
File Size : 30.9 MB
Format : PDF, Mobi
Download : 444
Read : 604
Download »
Computational engineering/science uses a blend of applications, mathematical models and computations. Mathematical models require accurate approximations of their parameters, which are often viewed as solutions to inverse problems. Thus, the study of inverse problems is an integral part of computational engineering/science. This book presents several aspects of inverse problems along with needed prerequisite topics in numerical analysis and matrix algebra. If the reader has previously studied these prerequisites, then one can rapidly move to the inverse problems in chapters 4-8 on image restoration, thermal radiation, thermal characterization and heat transfer. “This text does provide a comprehensive introduction to inverse problems and fills a void in the literature”. Robert E White, Professor of Mathematics, North Carolina State University