Search results for: exploratory-data-analysis-with-matlab

Exploratory Data Analysis with MATLAB

Author : Wendy L. Martinez
File Size : 44.83 MB
Format : PDF, Kindle
Download : 417
Read : 889
Download »
Exploratory data analysis (EDA) was conceived at a time when computers were not widely used, and thus computational ability was rather limited. As computational sophistication has increased, EDA has become an even more powerful process for visualizing and summarizing data before making model assumptions to generate hypotheses, encompassing larger a

Exploratory Data Analysis with MATLAB

Author : Wendy L. Martinez
File Size : 90.60 MB
Format : PDF
Download : 793
Read : 1068
Download »
Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data

Exploratory Data Analysis with MATLAB

Author : Wendy L. Martinez
File Size : 41.29 MB
Format : PDF, ePub, Mobi
Download : 331
Read : 297
Download »
Exploratory data analysis (EDA) was conceived at a time when computers were not widely used, and thus computational ability was rather limited. As computational sophistication has increased, EDA has become an even more powerful process for visualizing and summarizing data before making model assumptions to generate hypotheses, encompassing larger and more complex data sets. There are many resources for those interested in the theory of EDA, but this is the first book to use MATLAB to illustrate the computational aspects of this discipline. Exploratory Data Analysis with MATLAB presents the methods of EDA from a computational perspective. The authors extensively use MATLAB code and algorithm descriptions to provide state-of-the-art techniques for finding patterns and structure in data. Addressing theory, they also incorporate many annotated references to direct readers to the more theoretical aspects of the methods. The book presents an approach using the basic functions from MATLAB and the MATLAB Statistics Toolbox, in order to be more accessible and enduring. It also contains pseudo-code to enable users of other software packages to implement the algorithms. This text places the tools needed to implement EDA theory at the fingertips of researchers, applied mathematicians, computer scientists, engineers, and statisticians by using a practical/computational approach.

Exploratory Multivariate Analysis by Example Using R

Author : Francois Husson
File Size : 86.58 MB
Format : PDF, ePub, Docs
Download : 955
Read : 584
Download »
Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) a

Descriptive Statistics and Exploratory Analysis of Data With Matlab

Author : Karter J.
File Size : 37.74 MB
Format : PDF, ePub
Download : 582
Read : 1097
Download »
The aim of this book is to introduce the reader to the techniques of descriptive statistics and exploratory data analysis..Statistics Toolbox provides algorithms and tools for organizing, analyzing, and modeling data. You can use regression or classification for predictive modeling, generate random numbers for Monte Carlo simulations, use statistical plots for exploratory data analysis, and perform hypothesis tests. For analyzing multidimensional data, Statistics Toolbox includes algorithms that let you identify key variables that impact your model with sequential feature selection, transform your data with principal component analysis, apply regularization and shrinkage, or use partial least-squares regression. Statistics Toolbox includes specialized data types for organizing and accessing heterogeneous data. Dataset arrays store numeric data, text, and metadata in a single data container. Built-in methods enable you to merge datasets using a common key (join), calculate summary statistics on grouped data, and convert between tall and wide data representations. Categorical arrays provide a memory-efficient data container for storing information drawn from a finite, discrete set of categories.

Combinatorial Inference in Geometric Data Analysis

Author : Brigitte Le Roux
File Size : 53.58 MB
Format : PDF, ePub, Docs
Download : 148
Read : 729
Download »
Geometric Data Analysis designates the approach of Multivariate Statistics that conceptualizes the set of observations as a Euclidean cloud of points. Combinatorial Inference in Geometric Data Analysis gives an overview of multidimensional statistical inference methods applicable to clouds of points that make no assumption on the process of generating data or distributions, and that are not based on random modelling but on permutation procedures recasting in a combinatorial framework. It focuses particularly on the comparison of a group of observations to a reference population (combinatorial test) or to a reference value of a location parameter (geometric test), and on problems of homogeneity, that is the comparison of several groups for two basic designs. These methods involve the use of combinatorial procedures to build a reference set in which we place the data. The chosen test statistics lead to original extensions, such as the geometric interpretation of the observed level, and the construction of a compatibility region. Features: Defines precisely the object under study in the context of multidimensional procedures, that is clouds of points Presents combinatorial tests and related computations with R and Coheris SPAD software Includes four original case studies to illustrate application of the tests Includes necessary mathematical background to ensure it is self–contained This book is suitable for researchers and students of multivariate statistics, as well as applied researchers of various scientific disciplines. It could be used for a specialized course taught at either master or PhD level.

Music Data Analysis

Author : Claus Weihs
File Size : 80.12 MB
Format : PDF, Mobi
Download : 486
Read : 673
Download »
This book provides a comprehensive overview of music data analysis, from introductory material to advanced concepts. It covers various applications including transcription and segmentation as well as chord and harmony, instrument and tempo recognition. It also discusses the implementation aspects of music data analysis such as architecture, user interface and hardware. It is ideal for use in university classes with an interest in music data analysis. It also could be used in computer science and statistics as well as musicology.

Fundamentals of Data Science

Author : Sanjeev J. Wagh
File Size : 40.66 MB
Format : PDF, ePub
Download : 657
Read : 827
Download »
Fundamentals of Data Science is designed for students, academicians and practitioners with a complete walkthrough right from the foundational groundwork required to outlining all the concepts, techniques and tools required to understand Data Science. Data Science is an umbrella term for the non-traditional techniques and technologies that are required to collect, aggregate, process, and gain insights from massive datasets. This book offers all the processes, methodologies, various steps like data acquisition, pre-process, mining, prediction, and visualization tools for extracting insights from vast amounts of data by the use of various scientific methods, algorithms, and processes Readers will learn the steps necessary to create the application with SQl, NoSQL, Python, R, Matlab, Octave and Tablue. This book provides a stepwise approach to building solutions to data science applications right from understanding the fundamentals, performing data analytics to writing source code. All the concepts are discussed in simple English to help the community to become Data Scientist without much pre-requisite knowledge. Features : Simple strategies for developing statistical models that analyze data and detect patterns, trends, and relationships in data sets. Complete roadmap to Data Science approach with dedicatedsections which includes Fundamentals, Methodology and Tools. Focussed approach for learning and practice various Data Science Toolswith Sample code and examples for practice. Information is presented in an accessible way for students, researchers and academicians and professionals.

Exploratory Analysis of Data and Descriptive Statistics With Matlab

Author : G. Peck
File Size : 55.2 MB
Format : PDF, ePub, Docs
Download : 587
Read : 462
Download »
Statistics and Machine Learning Toolbox provides functions and apps to describe, analyze, and model data. You can use descriptive statistics and plots for exploratory data analysis, fit probability distributions to data, generate random numbers for Monte Carlo simulations, and perform hypothesis tests. Regression and classification algorithms let you draw inferences from data and build predictive models. For multidimensional data analysis, Statistics and Machine Learning Toolbox provides feature selection, stepwise regression, principal component analysis (PCA), regularization, and other dimensionality reduction methods that let you identify variables or features that impact your model. The toolbox provides supervised and unsupervised machine learning algorithms, including support vector machines (SVMs), boosted and bagged decision trees, k-nearest neighbor, k-means, k-medoids, hierarchical clustering, Gaussian mixture models, and hidden Markov models. Many of the statistics and machine learning algorithms can be used for computations on data sets that are too big to be stored in memory.. This book develops organizing data techniques, descriptive statistics, plots for exploratory data analysis, data visualization techniques and other exploratory techniques across examples using MATLAB.

Interactive Graphics for Data Analysis

Author : Martin Theus
File Size : 85.87 MB
Format : PDF, ePub, Docs
Download : 984
Read : 945
Download »
Interactive Graphics for Data Analysis: Principles and Examples discusses exploratory data analysis (EDA) and how interactive graphical methods can help gain insights as well as generate new questions and hypotheses from datasets.Fundamentals of Interactive Statistical GraphicsThe first part of the book summarizes principles and methodology, demons