# Search results for: filtering-and-system-identification

## Filtering and System Identification

Author : Michel Verhaegen
File Size : 46.75 MB
Format : PDF, Kindle
Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.

## Subspace Methods for System Identification

Author : Tohru Katayama
File Size : 52.63 MB
Format : PDF, ePub, Docs
An in-depth introduction to subspace methods for system identification in discrete-time linear systems thoroughly augmented with advanced and novel results, this text is structured into three parts. Part I deals with the mathematical preliminaries: numerical linear algebra; system theory; stochastic processes; and Kalman filtering. Part II explains realization theory as applied to subspace identification. Stochastic realization results based on spectral factorization and Riccati equations, and on canonical correlation analysis for stationary processes are included. Part III demonstrates the closed-loop application of subspace identification methods. Subspace Methods for System Identification is an excellent reference for researchers and a useful text for tutors and graduate students involved in control and signal processing courses. It can be used for self-study and will be of interest to applied scientists or engineers wishing to use advanced methods in modeling and identification of complex systems.

Author : Tokunbo Ogunfunmi
File Size : 88.21 MB
Format : PDF
Focuses on System Identification applications of the adaptive methods presented. but which can also be applied to other applications of adaptive nonlinear processes. Covers recent research results in the area of adaptive nonlinear system identification from the authors and other researchers in the field.

## System Identification 2003

Author : Paul Van Den Hof
File Size : 56.58 MB
Format : PDF, Docs
The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for control, experimental modelling in process control, vibration and modal analysis, model validation, monitoring and fault detection, signal processing and communication, parameter estimation and inverse modelling, statistical analysis and uncertainty bounding, adaptive control and data-based controller tuning, learning, data mining and Bayesian approaches, sequential Monte Carlo methods, including particle filtering, applications in process control systems, motion control systems, robotics, aerospace systems, bioengineering and medical systems, physical measurement systems, automotive systems, econometrics, transportation and communication systems *Provides the latest research on System Identification *Contains contributions written by experts in the field *Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.

## Nonlinear System Identification

Author : Oliver Nelles
File Size : 79.59 MB
Format : PDF, ePub
Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.

## System Identification Advances and Case Studies

Author :
File Size : 48.59 MB
Format : PDF, Kindle
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering

## Reduced Order Modelling Through System Identification Using Stochastic Filtering

Author : Karol Bogdanski
File Size : 79.83 MB
Format : PDF, ePub

## Kalman Filtering

Author : Charles K. Chui
File Size : 24.23 MB
Format : PDF, ePub
This book presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method and an indirect method.

## System Identification Under Non negativity Constraints

Author : Jie Chen
File Size : 40.58 MB
Format : PDF, Mobi

## Introduction to Mathematical Systems Theory

Author : Christiaan Heij
File Size : 88.29 MB
Format : PDF, ePub, Docs
This book provides an introduction to the theory of linear systems and control for students in business mathematics, econometrics, computer science, and engineering; the focus is on discrete time systems. The subjects treated are among the central topics of deterministic linear system theory: controllability, observability, realization theory, stability and stabilization by feedback, LQ-optimal control theory. Kalman filtering and LQC-control of stochastic systems are also discussed, as are modeling, time series analysis and model specification, along with model validation.

## Basic System Identification with MATLAB

Author : Kendall T.
File Size : 37.62 MB
Format : PDF, Mobi
System Identification Toolbox constructs mathematical models of dynamic systems from measured input-output data. It provides MATLAB(r) functions, Simulink blocks, and an interactive tool for creating and using models of dynamic systems not easily modeled from first principles or specifications You can use time-domain and frequency-domain input-output data to identify continuous-time and discrete-time transfer functions, process odels, and state-space models. The toolbox provides maximum likelihood, prediction-error minimization (PEM), subspace system identification, and other identification techniques.For nonlinear system dynamics, you can estimate Hammerstein-Weiner models and nonlinear ARX models with wavelet network, tree-partition, and sigmoid network nonlinearities. The toolbox performs grey-box system identification for estimating parameters of a user-defined model. You can use the identified model for prediction of system response and for simulation in Simulink. The toolbox also lets you model time-series data and perform time-series forecasting. The more important content in this book is the next:* Transfer function, process model, and state-space model identification using time-domain and frequency-domain response data* Autoregressive (ARX, ARMAX), Box-Jenkins, and Output-Error model estimation using maximum likelihood, prediction-error minimization(PEM), and subspace system identification techniques * Time-series modeling (AR, ARMA, ARIMA) and forecasting* Identification of nonlinear ARX models and Hammerstein-Weiner models with input-output nonlinearities such as saturation and dead zone* Linear and nonlinear grey-box system identification for estimation of user-defined models* Delay estimation, detrending, filtering, resampling, and reconstruction of missing data

## Adaptive Filtering Primer with MATLAB

Author : Alexander D. Poularikas
File Size : 43.21 MB
Format : PDF, ePub
Because of the wide use of adaptive filtering in digital signal processing and, because most of the modern electronic devices include some type of an adaptive filter, a text that brings forth the fundamentals of this field was necessary. The material and the principles presented in this book are easily accessible to engineers, scientists, and students who would like to learn the fundamentals of this field and have a background at the bachelor level. Adaptive Filtering Primer with MATLAB® clearly explains the fundamentals of adaptive filtering supported by numerous examples and computer simulations. The authors introduce discrete-time signal processing, random variables and stochastic processes, the Wiener filter, properties of the error surface, the steepest descent method, and the least mean square (LMS) algorithm. They also supply many MATLAB® functions and m-files along with computer experiments to illustrate how to apply the concepts to real-world problems. The book includes problems along with hints, suggestions, and solutions for solving them. An appendix on matrix computations completes the self-contained coverage. With applications across a wide range of areas, including radar, communications, control, medical instrumentation, and seismology, Adaptive Filtering Primer with MATLAB® is an ideal companion for quick reference and a perfect, concise introduction to the field.

## Nonlinear System Identification

Author : Stephen A. Billings
File Size : 80.72 MB
Format : PDF, Docs
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.

## Identification of Continuous Time Systems

Author : N.K. Sinha
File Size : 83.65 MB
Format : PDF
In view of the importance of system identification, the International Federation of Automatic Control (IFAC) and the International Federation of Operational Research Societies (IFORS) hold symposia on this topic every three years. Interest in continuous time approaches to system identification has been growing in recent years. This is evident from the fact that the of invited sessions on continuous time systems has increased from one in the 8th number Symposium that was held in Beijing in 1988 to three in the 9th Symposium in Budapest in 1991. It was during the 8th Symposium in August 1988 that the idea of bringing together important results on the topic of Identification of continuous time systems was conceived. Several distinguished colleagues, who were with us in Beijing at that time, encouraged us by promising on the spot to contribute to a comprehensive volume of collective work. Subsequently, we contacted colleagues all over the world, known for their work in this area, with a formal request to contribute to the proposed volume. The response was prompt and overwhelmingly encouraging. We sincerely thank all the authors for their valuable contributions covering various aspects of identification of continuous time systems.

## System Identification

Author : Anatoli Torokhti
File Size : 70.81 MB
Format : PDF, Docs
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering

## System Identification Environmental Modelling and Control System Design

Author : Liuping Wang
File Size : 21.38 MB
Format : PDF, Docs
This book is dedicated to Prof. Peter Young on his 70th birthday. Professor Young has been a pioneer in systems and control, and over the past 45 years he has influenced many developments in this field. This volume comprises a collection of contributions by leading experts in system identification, time-series analysis, environmetric modelling and control system design – modern research in topics that reflect important areas of interest in Professor Young’s research career. Recent theoretical developments in and relevant applications of these areas are explored treating the various subjects broadly and in depth. The authoritative and up-to-date research presented here will be of interest to academic researcher in control and disciplines related to environmental research, particularly those to with water systems. The tutorial style in which many of the contributions are composed also makes the book suitable as a source of study material for graduate students in those areas.

## System Identification of Vibrating Structures

Author : American Society of Mechanical Engineers. Applied Mechanics Division. Shock and Vibration Committee
File Size : 61.62 MB
Format : PDF, Kindle

Author : JOSE APOLINARIO JR
File Size : 46.42 MB
Format : PDF, Kindle
I feel very honoured to have been asked to write a brief foreword for this book on QRD-RLS Adaptive Filtering–asubjectwhichhas been close to my heart for many years. The book is well written and very timely – I look forward personally to seeing it in print. The editor is to be congratulated on assembling such a highly esteemed team of contributing authors able to span the broad range of topics and concepts which underpin this subject. In many respects, and for reasons well expounded by the authors, the LMS al- rithm has reigned supreme since its inception, as the algorithm of choice for prac- cal applications of adaptive ltering. However, as a result of the relentless advances in electronic technology, the demand for stable and ef cient RLS algorithms is growing rapidly – not just because the higher computational load is no longer such a serious barrier, but also because the technological pull has grown much stronger in the modern commercial world of 3G mobile communications, cognitive radio, high speed imagery, and so on.

## Digital Signal Processing System Level Design Using LabVIEW

Author : Nasser Kehtarnavaz
File Size : 71.1 MB
Format : PDF, Mobi