Search results for: handbook-of-computational-social-science-volume-1

Handbook of Computational Social Science Volume 1

Author : Uwe Engel
File Size : 38.96 MB
Format : PDF, Kindle
Download : 215
Read : 196
Download »
The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches. The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. This first volume focuses on the scope of computational social science, ethics, and case studies. It covers a range of key issues, including open science, formal modeling, and the social and behavioral sciences. This volume explores major debates, introduces digital trace data, reviews the changing survey landscape, and presents novel examples of computational social science research on sensing social interaction, social robots, bots, sentiment, manipulation, and extremism in social media. The volume not only makes major contributions to the consolidation of this growing research field but also encourages growth in new directions. With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates, and researchers engaging with computational methods across the social sciences, as well as those within the scientifi c and engineering sectors.

Handbook of Computational Social Science Volume 2

Author : Uwe Engel
File Size : 78.82 MB
Format : PDF, ePub, Docs
Download : 240
Read : 918
Download »
The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches. The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. This second volume focuses on foundations and advances in data science, statistical modeling, and machine learning. It covers a range of key issues, including the management of big data in terms of record linkage, streaming, and missing data. Machine learning, agent-based and statistical modeling, as well as data quality in relation to digital trace and textual data, as well as probability, non-probability, and crowdsourced samples represent further foci. The volume not only makes major contributions to the consolidation of this growing research field, but also encourages growth into new directions. With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates, and researchers engaging with computational methods across the social sciences, as well as those within the scientific and engineering sectors.

HANDBOOK of COMPUTATIONAL SOCIAL SCIENCE VOL 1 and VOL 2

Author : Taylor & Francis Group
File Size : 51.13 MB
Format : PDF, Kindle
Download : 803
Read : 633
Download »
The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches. The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. The first volume focuses on the scope of computational social science, ethics, and case studies. It covers a range of key issues, including open science, formal modeling, and the social and behavioral sciences. This volume explores major debates, introduces digital trace data, reviews the changing survey landscape, and presents novel examples of computational social science research on sensing social interaction, social robots, bots, sentiment, manipulation, and extremism in social media. The volume not only makes major contributions to the consolidation of this growing research field, but also encourages growth into new directions. The second volume focuses on foundations and advances in data science, statistical modeling, and machine learning. It covers a range of key issues, including the management of big data in terms of record linkage, streaming, and missing data. Machine learning, agent-based and statistical modeling, as well as data quality in relation to digital-trace and textual data, as well as probability-, non-probability-, and crowdsourced samples represent further foci. The volume not only makes major contributions to the consolidation of this growing research field, but also encourages growth into new directions. With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates and researchers engaging with computational methods across the social sciences, as well as those within the scientific and engineering sectors.

Opportunities and Challenges for Computational Social Science Methods

Author : Abanoz, Enes
File Size : 51.96 MB
Format : PDF, Kindle
Download : 516
Read : 1091
Download »
We are living in a digital era in which most of our daily activities take place online. This has created a big data phenomenon that has been subject to scientific research with increasingly available tools and processing power. As a result, a growing number of social science scholars are using computational methods for analyzing social behavior. To further the area, these evolving methods must be made known to sociological research scholars. Opportunities and Challenges for Computational Social Science Methods focuses on the implementation of social science methods and the opportunities and challenges of these methods. This book sheds light on the infrastructure that should be built to gain required skillsets, the tools used in computational social sciences, and the methods developed and applied into computational social sciences. Covering topics like computational communication, ecological cognition, and natural language processing, this book is an essential resource for researchers, data scientists, scholars, students, professors, sociologists, and academicians.

The SAGE Handbook of Social Media Research Methods

Author : Anabel Quan-Haase
File Size : 44.79 MB
Format : PDF
Download : 434
Read : 437
Download »
The SAGE Handbook of Social Media Research Methods spans the entire research process, from data collection to analysis and interpretation. This second edition has been comprehensively updated and expanded, from 39 to 49 chapters. In addition to a new section of chapters focussing on ethics, privacy and the politics of social media data, the new edition provides broader coverage of topics such as: Data sources Scraping and spidering data Locative data, video data and linked data Platform-specific analysis Analytical tools Critical social media analysis Written by leading scholars from across the globe, the chapters provide a mix of theoretical and applied assessments of topics, and include a range of new case studies and data sets that exemplify the methodological approaches. This Handbook is an essential resource for any researcher or postgraduate student embarking on a social media research project. PART 1: Conceptualising and Designing Social Media Research PART 2: Collecting Data PART 3: Qualitative Approaches to Social Media Data PART 4: Quantitative Approaches to Social Media Data PART 5: Diverse Approaches to Social Media Data PART 6: Research & Analytical Tools PART 7: Social Media Platforms PART 8: Privacy, Ethics and Inequalities

Robots in Care and Everyday Life

Author : Uwe Engel
File Size : 71.56 MB
Format : PDF, Kindle
Download : 961
Read : 533
Download »
This open access book presents detailed findings about the ethical, legal, and social acceptance of robots in the German and European context. The key resource is the Bremen AI Delphi survey of scientists and politicians and a related population survey. The focus is on trust in robotic assistance, human willingness to use this assistance, and the expected personal well-being in human-robot interaction. Using recent data from Eurostat, the European Social Survey, and the Eurobarometer survey, the analysis is extended to Germany and the EU. The acceptance of robots in care and everyday life is viewed against their acceptance in other contexts of life and the scientific research. The book reports on how the probability of five complex future scenarios is evaluated by experts and politicians. These scenarios cover a broad range of topics, including the worst-case scenario of cutthroat competition for jobs, the wealth promise of AI, communication in human-robot interaction, robotic assistance, and ethical and legal conflicts. International economic competition alone will ensure that countries invest sustainably in the future technologies of AI and robots. But will these technologies also be accepted by the population? The book raises the core issue of how governments can gain the needed social, ethical, and user acceptance of AI and robots in everyday life. This highly topical book is of interest to researchers, professionals and policy makers working on various aspects of human-robot interaction. This is an open access book.

Proceedings of the 2019 International Conference of The Computational Social Science Society of the Americas

Author : Zining Yang
File Size : 74.17 MB
Format : PDF, ePub
Download : 661
Read : 992
Download »
This book presents the latest research into CSS methods, uses, and results, as presented at the 2019 annual conference of the CSSSA. This conference was held in Santa Fe, New Mexico, October 24 – 27, 2019, at the Drury Plaza Hotel. What follows is a diverse representation of new results and approaches for using the tools of CSS and agent-based modeling (ABM) for exploring complex phenomena across many different domains. Readers will therefore not only have the results of these specific projects on which to build, but will also gain a greater appreciation for the broad scope of CSS, and have a wealth of case-study examples that can serve as meaningful exemplars for new research projects and activities. The Computational Social Science Society of the Americas (CSSSA) is a professional society that aims to advance the field of CSS in all its areas, from fundamental principles to real-world applications, by holding conferences and workshops, promoting standards of scientific excellence in research and teaching, and publishing novel research findings.

Doing Computational Social Science

Author : John McLevey
File Size : 36.39 MB
Format : PDF, Kindle
Download : 998
Read : 417
Download »
Computational approaches offer exciting opportunities for us to do social science differently. This beginner’s guide discusses a range of computational methods and how to use them to study the problems and questions you want to research. It assumes no knowledge of programming, offering step-by-step guidance for coding in Python and drawing on examples of real data analysis to demonstrate how you can apply each approach in any discipline. The book also: Considers important principles of social scientific computing, including transparency, accountability and reproducibility. Understands the realities of completing research projects and offers advice for dealing with issues such as messy or incomplete data and systematic biases. Empowers you to learn at your own pace, with online resources including screencast tutorials and datasets that enable you to practice your skills and get up to speed. For anyone who wants to use computational methods to conduct a social science research project, this book equips you with the skills, good habits and best working practices to do rigorous, high quality work.

Knowledge Discovery in the Social Sciences

Author : Xiaoling Shu
File Size : 56.21 MB
Format : PDF, Docs
Download : 600
Read : 546
Download »
Knowledge Discovery in the Social Sciences helps readers find valid, meaningful, and useful information. It is written for researchers and data analysts as well as students who have no prior experience in statistics or computer science. Suitable for a variety of classes—including upper-division courses for undergraduates, introductory courses for graduate students, and courses in data management and advanced statistical methods—the book guides readers in the application of data mining techniques and illustrates the significance of newly discovered knowledge. Readers will learn to: • appreciate the role of data mining in scientific research • develop an understanding of fundamental concepts of data mining and knowledge discovery • use software to carry out data mining tasks • select and assess appropriate models to ensure findings are valid and meaningful • develop basic skills in data preparation, data mining, model selection, and validation • apply concepts with end-of-chapter exercises and review summaries

Big Data in Computational Social Science and Humanities

Author : Shu-Heng Chen
File Size : 48.82 MB
Format : PDF
Download : 120
Read : 472
Download »
This edited volume focuses on big data implications for computational social science and humanities from management to usage. The first part of the book covers geographic data, text corpus data, and social media data, and exemplifies their concrete applications in a wide range of fields including anthropology, economics, finance, geography, history, linguistics, political science, psychology, public health, and mass communications. The second part of the book provides a panoramic view of the development of big data in the fields of computational social sciences and humanities. The following questions are addressed: why is there a need for novel data governance for this new type of data?, why is big data important for social scientists?, and how will it revolutionize the way social scientists conduct research? With the advent of the information age and technologies such as Web 2.0, ubiquitous computing, wearable devices, and the Internet of Things, digital society has fundamentally changed what we now know as "data", the very use of this data, and what we now call "knowledge". Big data has become the standard in social sciences, and has made these sciences more computational. Big Data in Computational Social Science and Humanities will appeal to graduate students and researchers working in the many subfields of the social sciences and humanities.