Search results for: hands-on-unsupervised-learning-using-python

Hands On Unsupervised Learning Using Python

Author : Ankur A. Patel
File Size : 41.93 MB
Format : PDF, Docs
Download : 444
Read : 806
Download »
Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning Set up and manage machine learning projects end-to-end Build an anomaly detection system to catch credit card fraud Clusters users into distinct and homogeneous groups Perform semisupervised learning Develop movie recommender systems using restricted Boltzmann machines Generate synthetic images using generative adversarial networks

Hands On Unsupervised Learning with Python

Author : Giuseppe Bonaccorso
File Size : 43.8 MB
Format : PDF, Kindle
Download : 475
Read : 1278
Download »
Discover the skill-sets required to implement various approaches to Machine Learning with Python Key Features Explore unsupervised learning with clustering, autoencoders, restricted Boltzmann machines, and more Build your own neural network models using modern Python libraries Practical examples show you how to implement different machine learning and deep learning techniques Book Description Unsupervised learning is about making use of raw, untagged data and applying learning algorithms to it to help a machine predict its outcome. With this book, you will explore the concept of unsupervised learning to cluster large sets of data and analyze them repeatedly until the desired outcome is found using Python. This book starts with the key differences between supervised, unsupervised, and semi-supervised learning. You will be introduced to the best-used libraries and frameworks from the Python ecosystem and address unsupervised learning in both the machine learning and deep learning domains. You will explore various algorithms, techniques that are used to implement unsupervised learning in real-world use cases. You will learn a variety of unsupervised learning approaches, including randomized optimization, clustering, feature selection and transformation, and information theory. You will get hands-on experience with how neural networks can be employed in unsupervised scenarios. You will also explore the steps involved in building and training a GAN in order to process images. By the end of this book, you will have learned the art of unsupervised learning for different real-world challenges. What you will learn Use cluster algorithms to identify and optimize natural groups of data Explore advanced non-linear and hierarchical clustering in action Soft label assignments for fuzzy c-means and Gaussian mixture models Detect anomalies through density estimation Perform principal component analysis using neural network models Create unsupervised models using GANs Who this book is for This book is intended for statisticians, data scientists, machine learning developers, and deep learning practitioners who want to build smart applications by implementing key building block unsupervised learning, and master all the new techniques and algorithms offered in machine learning and deep learning using real-world examples. Some prior knowledge of machine learning concepts and statistics is desirable.

Hands on Unsupervised Learning Using Python

Author : Ankur A. Patel
File Size : 87.16 MB
Format : PDF
Download : 723
Read : 1284
Download »

Generatives Deep Learning

Author : David Foster
File Size : 56.32 MB
Format : PDF, Kindle
Download : 130
Read : 1329
Download »
Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen - kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle. David Foster veranschaulicht die Funktionsweise jeder Methode, beginnend mit den Grundlagen des Deep Learning mit Keras, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen dem Leser herauszufinden, wie seine Modelle noch effizienter lernen und noch kreativer werden können.

Hands on Unsupervised Learning Using Python

Author : Ankur A. Patel
File Size : 25.8 MB
Format : PDF, Mobi
Download : 131
Read : 861
Download »

Hands on Unsupervised Learning with Python

Author : Stefan Jansen
File Size : 61.80 MB
Format : PDF, Kindle
Download : 662
Read : 661
Download »
"This course explains the most important Unsupervised Learning algorithms using real-world examples of business applications in Python code. This course will allow you to utilize Principal Component Analysis, and to visualize and interpret the results of your datasets such as the ones in the above description. You will also be able to apply hard and soft clustering methods (k-Means and Gaussian Mixture Models) to assign segment labels to customers categorized in your sample data sets."--Resource description page.

Hands On Unsupervised Learning with TensorFlow 2 0

Author : Mahsa Lotfi
File Size : 36.60 MB
Format : PDF, ePub, Mobi
Download : 349
Read : 512
Download »
Learn unsupervised learning in Python with hands-on practical applications for each learning model. About This Video Acquire an in-depth understanding of unsupervised learning models and their various types Learn how to implement different unsupervised learning algorithms using Python and the TensorFlow library Build unsupervised learning models for more complex problems based on the simple examples in this tutorial In Detail Nowadays, machine learning is becoming increasingly important to businesses. It is used to solve various business problems using supervised and unsupervised algorithms. In unsupervised learning, Artificial Intelligence systems try to categorize unlabeled and unsorted data based on the similarities and differences that exist among data. In this case, the capabilities of unsupervised learning methods to generate a model based on data make it possible to deal with complex and more difficult problems in comparison with the capabilities of supervised learning. In this course, we examine different unsupervised learning methods and solve practical problems using the TensorFlow platform. Solving examples of real-world problems using TensorFlow is more inspiring and compelling and will enhance your practical skills. By the end of this course, you will gain significant hands-on experience using unsupervised learning algorithms with TensorFlow and will be able to make your own model to solve relevant real-world learning problems.

Hands On Machine Learning with Scikit Learn Keras and TensorFlow

Author : Aurélien Géron
File Size : 45.12 MB
Format : PDF, ePub
Download : 510
Read : 1208
Download »
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets

Hands On Machine Learning with Scikit Learn Keras and TensorFlow

Author : Aurélien Géron
File Size : 90.45 MB
Format : PDF
Download : 198
Read : 1188
Download »
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets

Machine Learning in Python

Author : Bob Mather
File Size : 78.19 MB
Format : PDF, ePub, Mobi
Download : 482
Read : 799
Download »
Are you excited about Artificial Intelligence and want to get started?Are you excited about Machine Learning and want to learn how to implement in Python? The book below is the answer. Given the large amounts of data we use everyday; whether it is in the web, supermarkets, social media etc. analysis of data has become integral to our daily life. The ability to do so effectively can propel your career or business to great heights. Machine Learning is the most effective data analysis tool. While it is a complex topic, it can be broken down into simpler steps, as show in this book. We are using Python, which is a great programming language for beginners. Python is a great language that is commonly used with Machine Learning. Python is used extensively in Mathematics, Gaming and Graphic Design. It is fast to develop and prototype. It is web capable, meaning that we can use Python to gather web data. It is adaptable, and has great community of users. Here's What's Included In This Book: What is Machine Learning?Why use Python?Regression Analysis using Python with an exampleClustering Analysis using Python with an exampleImplementing an Artificial Neural NetworkBackpropagation90 Day Plan to Learn and Implement Machine LearningConclusion

Python

Author : Giuseppe Bonaccorso
File Size : 90.77 MB
Format : PDF, Mobi
Download : 168
Read : 1321
Download »
Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems Key Features Master supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and more Build, deploy, and scale end-to-end deep neural network models in a production environment Book Description This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: Mastering Machine Learning Algorithms by Giuseppe Bonaccorso Mastering TensorFlow 1.x by Armando Fandango Deep Learning for Computer Vision by Rajalingappaa Shanmugamani What you will learn Explore how an ML model can be trained, optimized, and evaluated Work with Autoencoders and Generative Adversarial Networks Explore the most important Reinforcement Learning techniques Build end-to-end deep learning (CNN, RNN, and Autoencoders) models Who this book is for This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.

Hands On Machine Learning for Cybersecurity

Author : Soma Halder
File Size : 55.88 MB
Format : PDF, ePub, Mobi
Download : 195
Read : 220
Download »
Get into the world of smart data security using machine learning algorithms and Python libraries Key Features Learn machine learning algorithms and cybersecurity fundamentals Automate your daily workflow by applying use cases to many facets of security Implement smart machine learning solutions to detect various cybersecurity problems Book Description Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems What you will learn Use machine learning algorithms with complex datasets to implement cybersecurity concepts Implement machine learning algorithms such as clustering, k-means, and Naive Bayes to solve real-world problems Learn to speed up a system using Python libraries with NumPy, Scikit-learn, and CUDA Understand how to combat malware, detect spam, and fight financial fraud to mitigate cyber crimes Use TensorFlow in the cybersecurity domain and implement real-world examples Learn how machine learning and Python can be used in complex cyber issues Who this book is for This book is for the data scientists, machine learning developers, security researchers, and anyone keen to apply machine learning to up-skill computer security. Having some working knowledge of Python and being familiar with the basics of machine learning and cybersecurity fundamentals will help to get the most out of the book

Hands On Machine Learning with IBM Watson

Author : James Miller
File Size : 30.45 MB
Format : PDF, ePub, Docs
Download : 282
Read : 715
Download »
A practical guide on Machine learning with IBM cloud to act as a solid yet concise reference for the readers. You will learn about the role of data representation and feature extraction in machine learning. This book will help you learn how to use the IBM Cloud and Watson Machine learning service to develop real-world machine learning solutions.

Hands On Machine Learning with scikit learn and Scientific Python Toolkits

Author : Tarek Amr
File Size : 25.47 MB
Format : PDF, ePub, Mobi
Download : 997
Read : 733
Download »
Integrate scikit-learn with various tools such as NumPy, pandas, imbalanced-learn, and scikit-surprise and use it to solve real-world machine learning problems Key Features Delve into machine learning with this comprehensive guide to scikit-learn and scientific Python Master the art of data-driven problem-solving with hands-on examples Foster your theoretical and practical knowledge of supervised and unsupervised machine learning algorithms Book Description Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production. What you will learn Understand when to use supervised, unsupervised, or reinforcement learning algorithms Find out how to collect and prepare your data for machine learning tasks Tackle imbalanced data and optimize your algorithm for a bias or variance tradeoff Apply supervised and unsupervised algorithms to overcome various machine learning challenges Employ best practices for tuning your algorithm’s hyper parameters Discover how to use neural networks for classification and regression Build, evaluate, and deploy your machine learning solutions to production Who this book is for This book is for data scientists, machine learning practitioners, and anyone who wants to learn how machine learning algorithms work and to build different machine learning models using the Python ecosystem. The book will help you take your knowledge of machine learning to the next level by grasping its ins and outs and tailoring it to your needs. Working knowledge of Python and a basic understanding of underlying mathematical and statistical concepts is required.

Hands On Machine Learning on Google Cloud Platform

Author : Giuseppe Ciaburro
File Size : 20.35 MB
Format : PDF, Docs
Download : 894
Read : 622
Download »
In this book, you will learn how to create powerful machine learning based applications for a wide variety of problems leveraging different data services from the Google Cloud Platform. Finally, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems.

Hands on Supervised Learning with Python

Author : Gnana Lakshmi T C
File Size : 40.1 MB
Format : PDF, Docs
Download : 118
Read : 799
Download »
Hands-On ML problem solving and creating solutions using Python KEY FEATURES ●Introduction to Python Programming ●Python for Machine Learning ●Introduction to Machine Learning ●Introduction to Predictive Modelling, Supervised and Unsupervised Algorithms ●Linear Regression, Logistic Regression and Support Vector Machines DESCRIPTION You will learn about the fundamentals of Machine Learning and Python programming post, which you will be introduced to predictive modelling and the different methodologies in predictive modelling. You will be introduced to Supervised Learning algorithms and Unsupervised Learning algorithms and the difference between them. We will focus on learning supervised machine learning algorithms covering Linear Regression, Logistic Regression, Support Vector Machines, Decision Trees and Artificial Neural Networks. For each of these algorithms, you will work hands-on with open-source datasets and use python programming to program the machine learning algorithms. You will learn about cleaning the data and optimizing the features to get the best results out of your machine learning model. You will learn about the various parameters that determine the accuracy of your model and how you can tune your model based on the reflection of these parameters. WHAT WILL YOU LEARN ●Get a clear vision of what is Machine Learning and get familiar with the foundation principles of Machine learning. ●Understand the Python language-specific libraries available for Machine learning and be able to work with those libraries. ●Explore the different Supervised Learning based algorithms in Machine Learning and know how to implement them when a real-time use case is presented to you. ●Have hands-on with Data Exploration, Data Cleaning, Data Preprocessing and Model implementation. ●Get to know the basics of Deep Learning and some interesting algorithms in this space. ●Choose the right model based on your problem statement and work with EDA techniques to get good accuracy on your model WHO THIS BOOK IS FOR This book is for anyone interested in understanding Machine Learning. Beginners, Machine Learning Engineers and Data Scientists who want to get familiar with Supervised Learning algorithms will find this book helpful. TABLE OF CONTENTS 1. Introduction to Python Programming 2. Python for Machine Learning 3. Introduction to Machine Learning 4. Supervised Learning and Unsupervised Learning 5. Linear Regression: A Hands-on guide 6. Logistic Regression – An Introduction 7. A sneak peek into the working of Support Vector machines(SVM) 8. Decision Trees 9. Random Forests 10. Time Series models in Machine Learning 11. Introduction to Neural Networks 12. Recurrent Neural Networks 13. Convolutional Neural Networks 14. Performance Metrics 15. Introduction to Design Thinking 16. Design Thinking Case Study

Hands On Data Science for Marketing

Author : Yoon Hyup Hwang
File Size : 50.8 MB
Format : PDF, Docs
Download : 730
Read : 1270
Download »
Optimize your marketing strategies through analytics and machine learning Key Features Understand how data science drives successful marketing campaigns Use machine learning for better customer engagement, retention, and product recommendations Extract insights from your data to optimize marketing strategies and increase profitability Book Description Regardless of company size, the adoption of data science and machine learning for marketing has been rising in the industry. With this book, you will learn to implement data science techniques to understand the drivers behind the successes and failures of marketing campaigns. This book is a comprehensive guide to help you understand and predict customer behaviors and create more effectively targeted and personalized marketing strategies. This is a practical guide to performing simple-to-advanced tasks, to extract hidden insights from the data and use them to make smart business decisions. You will understand what drives sales and increases customer engagements for your products. You will learn to implement machine learning to forecast which customers are more likely to engage with the products and have high lifetime value. This book will also show you how to use machine learning techniques to understand different customer segments and recommend the right products for each customer. Apart from learning to gain insights into consumer behavior using exploratory analysis, you will also learn the concept of A/B testing and implement it using Python and R. By the end of this book, you will be experienced enough with various data science and machine learning techniques to run and manage successful marketing campaigns for your business. What you will learn Learn how to compute and visualize marketing KPIs in Python and R Master what drives successful marketing campaigns with data science Use machine learning to predict customer engagement and lifetime value Make product recommendations that customers are most likely to buy Learn how to use A/B testing for better marketing decision making Implement machine learning to understand different customer segments Who this book is for If you are a marketing professional, data scientist, engineer, or a student keen to learn how to apply data science to marketing, this book is what you need! It will be beneficial to have some basic knowledge of either Python or R to work through the examples. This book will also be beneficial for beginners as it covers basic-to-advanced data science concepts and applications in marketing with real-life examples.

Hands on Machine Learning with Python

Author : Ashwin Pajankar
File Size : 20.34 MB
Format : PDF, Docs
Download : 361
Read : 464
Download »
Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python as the programming languages. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios. The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoretical and practical lessons. The third section explains complex neural network architectures with details on internal working and implementation of convolutional neural networks. It further discusses neural network architectures for predicting sequences in form of recurrent neural networks and long short term memory. The final chapter contains a detailed end-to-end solution with neural networks in Pytorch. After completing Hands-on Machine Learning with Python, you will be able to implement machine learning and neural network solutions and extend them to your advantage. What You'll Learn Review data structures in NumPy and Pandas Demonstrate machine learning techniques and algorithm Understand supervised learning and unsupervised learning Examine convolutional neural networks and Recurrent neural networks Get acquainted with scikit-learn and PyTorch Who This Book Is For Data scientists, machine learning engineers, and software professionals with basic skills in Python programming.

Hands On Machine Learning for Algorithmic Trading

Author : Stefan Jansen
File Size : 79.30 MB
Format : PDF
Download : 308
Read : 477
Download »
With the help of this book, you'll build smart algorithmic models using machine learning algorithms covering tasks such as time series forecasting, backtesting, trade predictions, and more using easy-to-follow examples. By the end, you'll be able to adopt algorithmic trading in your own business and implement intelligent investigative strategies.

Programming with TensorFlow

Author : Kolla Bhanu Prakash
File Size : 67.22 MB
Format : PDF, ePub
Download : 337
Read : 150
Download »
This practical book provides an end-to-end guide to TensorFlow, the leading open source software library that helps you build and train neural networks for deep learning, Natural Language Processing (NLP), speech recognition, and general predictive analytics. The book provides a hands-on approach to TensorFlow fundamentals for a broad technical audience—from data scientists and engineers to students and researchers. The authors begin by working through some basic examples in TensorFlow before diving deeper into topics such as CNN, RNN, LSTM, and GNN. The book is written for those who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries. The authors demonstrate TensorFlow projects on Single Board Computers (SBCs).