Search Results for "introduction-to-partial-differential-equations-for-scientists-and-engineers-using-mathematica"

Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica

Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica

  • Author: Kuzman Adzievski,Abul Hasan Siddiqi
  • Publisher: CRC Press
  • ISBN: 1466510579
  • Category: Mathematics
  • Page: 648
  • View: 6281
DOWNLOAD NOW »
With a special emphasis on engineering and science applications, this textbook provides a mathematical introduction to PDEs at the undergraduate level. It takes a new approach to PDEs by presenting computation as an integral part of the study of differential equations. The authors use Mathematica® along with graphics to improve understanding and interpretation of concepts. They also present exercises in each chapter and solutions to selected examples. Topics discussed include Laplace and Fourier transforms as well as Sturm-Liouville boundary value problems.

Partial Differential Equations and Mathematica

Partial Differential Equations and Mathematica

  • Author: Prem K. Kythe,Michael R. Schäferkotter,Pratap Puri
  • Publisher: CRC Press
  • ISBN: 9781584883142
  • Category: Mathematics
  • Page: 440
  • View: 1065
DOWNLOAD NOW »
Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.

Introduction to Partial Differential Equations with MATLAB

Introduction to Partial Differential Equations with MATLAB

  • Author: Jeffery M. Cooper,Jeffery Cooper
  • Publisher: Springer Science & Business Media
  • ISBN: 9780817639679
  • Category: Mathematics
  • Page: 540
  • View: 2252
DOWNLOAD NOW »
The subject of partial differential equations has an unchanging core of material but is constantly expanding and evolving. Introduction to Partial Differential Equations with MATLAB is a careful integration of traditional core topics with modern topics, taking full advantage of the computational power of MATLAB to enhance the learning experience. This advanced text/reference is an introduction to partial differential equations covering the traditional topics within a modern context. To provide an up-to-date treatment, techniques of numerical computation have been included with carefully selected nonlinear topics, including nonlinear first order equations. Each equation studied is placed in the appropriate physical context. The analytical aspects of solutions are discussed in an integrated fashion with extensive examples and exercises, both analytical and computational. The book is excellent for classroom use and can be used for self-study purposes. Topic and Features: • Nonlinear equations including nonlinear conservation laws; • Dispersive wave equations and the Schrodinger equation; • Numerical methods for each core equation including finite difference methods, finite element methods, and the fast Fourier transform; • Extensive use of MATLAB programs in exercise sets. MATLAB m files for numerical and graphics programs available by ftp from this web site. This text/reference is an excellent resources designed to introduce advanced students in mathematics, engineering and sciences to partial differential equations. It is also suitable as a self-study resource for professionals and practitioners.

Solution Techniques for Elementary Partial Differential Equations

Solution Techniques for Elementary Partial Differential Equations

  • Author: Christian Constanda
  • Publisher: CRC Press
  • ISBN: 1498704980
  • Category: Mathematics
  • Page: 358
  • View: 714
DOWNLOAD NOW »
Solution Techniques for Elementary Partial Differential Equations, Third Edition remains a top choice for a standard, undergraduate-level course on partial differential equations (PDEs). Making the text even more user-friendly, this third edition covers important and widely used methods for solving PDEs. New to the Third Edition New sections on the series expansion of more general functions, other problems of general second-order linear equations, vibrating string with other types of boundary conditions, and equilibrium temperature in an infinite strip Reorganized sections that make it easier for students and professors to navigate the contents Rearranged exercises that are now at the end of each section/subsection instead of at the end of the chapter New and improved exercises and worked examples A brief Mathematica® program for nearly all of the worked examples, showing students how to verify results by computer This bestselling, highly praised textbook uses a streamlined, direct approach to develop students’ competence in solving PDEs. It offers concise, easily understood explanations and worked examples that allow students to see the techniques in action.

Numerical Integration of Space Fractional Partial Differential Equations

Numerical Integration of Space Fractional Partial Differential Equations

Vol 2 - Applications from Classical Integer PDEs

  • Author: Younes Salehi,William E. Schiesser
  • Publisher: Morgan & Claypool Publishers
  • ISBN: 1681732106
  • Category: Mathematics
  • Page: 205
  • View: 7533
DOWNLOAD NOW »
Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as: •Vol 1: Introduction to Algorithms and Computer Coding in R •Vol 2: Applications from Classical Integer PDEs. Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative. In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are: •Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions •Fisher-Kolmogorov SFPDE •Burgers SFPDE •Fokker-Planck SFPDE •Burgers-Huxley SFPDE •Fitzhugh-Nagumo SFPDE. These SFPDEs were selected because they are integer first order in time and integer second order in space. The variation in the spatial derivative from order two (parabolic) to order one (first order hyperbolic) demonstrates the effect of the spatial fractional order ?? with 1 ≤ ?? ≤ 2. All of the example SFPDEs are one dimensional in Cartesian coordinates. Extensions to higher dimensions and other coordinate systems, in principle, follow from the examples in this second volume. The examples start with a statement of the integer PDEs that are then extended to SFPDEs. The format of each chapter is the same as in the first volume. The R routines can be downloaded and executed on a modest computer (R is readily available from the Internet).

Partial Differential Equations

Partial Differential Equations

An Introduction with Mathematica and MAPLE

  • Author: Ioannis P. Stavroulakis,Stepan A. Tersian
  • Publisher: World Scientific
  • ISBN: 9789812388155
  • Category: Mathematics
  • Page: 306
  • View: 6514
DOWNLOAD NOW »
This textbook is a self-contained introduction to partial differential equations.It has been designed for undergraduates and first year graduate students majoring in mathematics, physics, engineering, or science.The text provides an introduction to the basic equations of mathematical physics and the properties of their solutions, based on classical calculus and ordinary differential equations. Advanced concepts such as weak solutions and discontinuous solutions of nonlinear conservation laws are also considered.

The Art of Modeling in Science and Engineering with Mathematica, Second Edition

The Art of Modeling in Science and Engineering with Mathematica, Second Edition

  • Author: Diran Basmadjian,Ramin Farnood
  • Publisher: CRC Press
  • ISBN: 9781584884606
  • Category: Mathematics
  • Page: 509
  • View: 1555
DOWNLOAD NOW »
Thoroughly revised and updated, The Art of Modeling in Science and Engineering with Mathematica®, Second Edition explores the mathematical tools and procedures used in modeling based on the laws of conservation of mass, energy, momentum, and electrical charge. The authors have culled and consolidated the best from the first edition and expanded the range of applied examples to reach a wider audience. The text proceeds, in measured steps, from simple models of real-world problems at the algebraic and ordinary differential equations (ODE) levels to more sophisticated models requiring partial differential equations. The traditional solution methods are supplemented with Mathematica , which is used throughout the text to arrive at solutions for many of the problems presented. The text is enlivened with a host of illustrations and practice problems drawn from classical and contemporary sources. They range from Thomson’s famous experiment to determine e/m and Euler’s model for the buckling of a strut to an analysis of the propagation of emissions and the performance of wind turbines. The mathematical tools required are first explained in separate chapters and then carried along throughout the text to solve and analyze the models. Commentaries at the end of each illustration draw attention to the pitfalls to be avoided and, perhaps most important, alert the reader to unexpected results that defy conventional wisdom. These features and more make the book the perfect tool for resolving three common difficulties: the proper choice of model, the absence of precise solutions, and the need to make suitable simplifying assumptions and approximations. The book covers a wide range of physical processes and phenomena drawn from various disciplines and clearly illuminates the link between the physical system being modeled and the mathematical expression that results.

A Workbook for Differential Equations

A Workbook for Differential Equations

  • Author: Bernd S. W. Schröder
  • Publisher: John Wiley & Sons
  • ISBN: 0470447516
  • Category: Mathematics
  • Page: 340
  • View: 5418
DOWNLOAD NOW »
An accessible and hands-on approach to modeling and predicting real-world phenomena using differential equations A Workbook for Differential Equations presents an interactive introduction to fundamental solution methods for ordinary differential equations. The author emphasizes the importance of manually working through computations and models, rather than simply reading or memorizing formulas. Utilizing real-world applications from spring-mass systems and circuits to vibrating strings and an overview of the hydrogen atom, the book connects modern research with the presented topics, including first order equations, constant coefficient equations, Laplace transforms, partial differential equations, series solutions, systems, and numerical methods. The result is a unique guide to understanding the significance of differential equations in mathematics, science, and engineering. The workbook contains modules that involve readers in as many ways as possible, and each module begins with "Prerequisites" and "Learning Objectives" sections that outline both the skills needed to understand the presented material and what new skills will be obtained by the conclusion of the module. Detailed applications are intertwined in the discussion, motivating the investigation of new classes of differential equations and their accompanying techniques. Introductory modeling sections discuss applications and why certain known solution techniques may not be enough to successfully analyze certain situations. Almost every module concludes with a section that contains various projects, ranging from programming tasks to theoretical investigations. The book is specifically designed to promote the development of effective mathematical reading habits such as double-checking results and filling in omitted steps in a computation. Rather than provide lengthy explanations of what readers should do, good habits are demonstrated in short sections, and a wide range of exercises provide the opportunity to test reader comprehension of the concepts and techniques. Rich illustrations, highlighted notes, and boxed comments offer illuminating explanations of the computations. The material is not specific to any one particular software package, and as a result, necessary algorithms can be implemented in various programs, including Mathematica®, Maple, and Mathcad®. The book's related Web site features supplemental slides as well as videos that discuss additional topics such as homogeneous first order equations, the general solution of separable differential equations, and the derivation of the differential equations for a multi-loop circuit. In addition, twenty activities are included at the back of the book, allowing for further practice of discussed topics whether in the classroom or for self-study. With its numerous pedagogical features that consistently engage readers, A Workbook for Differential Equations is an excellent book for introductory courses in differential equations and applied mathematics at the undergraduate level. It is also a suitable reference for professionals in all areas of science, physics, and engineering.

The Art of Modeling in Science and Engineering with Mathematica

The Art of Modeling in Science and Engineering with Mathematica

  • Author: Diran Basmadjian
  • Publisher: CRC Press
  • ISBN: 9781439858172
  • Category: Mathematics
  • Page: 688
  • View: 5347
DOWNLOAD NOW »
Modeling is practiced in engineering and all physical sciences. Many specialized texts exist - written at a high level - that cover this subject. However, students and even professionals often experience difficulties in setting up and solving even the simplest of models. This can be attributed to three difficulties: the proper choice of model, the absence of precise solutions, and the necessity to make suitable simplifying assumptions and approximations. Overcoming these difficulties is the focus of The Art of Modeling in Science and Engineering. The text is designed for advanced undergraduate and graduate students and practicing professionals in the sciences and engineering with an interest in Modeling based on Mass, Energy and Momentum or Force Balances. The book covers a wide range of physical processes and phenomena drawn from chemical, mechanical, civil, environmental sciences and bio- sciences. A separate section is devoted to "real World" industrial problems. The author explains how to choose the simplest model, obtain an appropriate solution to the problem and make simplifying assumptions/approximations.

Numerical Solutions for Partial Differential Equations

Numerical Solutions for Partial Differential Equations

Problem Solving Using Mathematica

  • Author: Victor Grigor'e Ganzha,Evgenii Vasilev Vorozhtsov
  • Publisher: CRC Press
  • ISBN: 1351427504
  • Category: Mathematics
  • Page: 347
  • View: 1621
DOWNLOAD NOW »
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.