Search results for: itos-stochastic-calculus-and-probability-theory

It s Stochastic Calculus and Probability Theory

Author : Nobuyuki Ikeda
File Size : 26.20 MB
Format : PDF, Kindle
Download : 744
Read : 984
Download »
Professor Kiyosi Ito is well known as the creator of the modern theory of stochastic analysis. Although Ito first proposed his theory, now known as Ito's stochastic analysis or Ito's stochastic calculus, about fifty years ago, its value in both pure and applied mathematics is becoming greater and greater. For almost all modern theories at the forefront of probability and related fields, Ito's analysis is indispensable as an essential instrument, and it will remain so in the future. For example, a basic formula, called the Ito formula, is well known and widely used in fields as diverse as physics and economics. This volume contains 27 papers written by world-renowned probability theorists. Their subjects vary widely and they present new results and ideas in the fields where stochastic analysis plays an important role. Also included are several expository articles by well-known experts surveying recent developments. Not only mathematicians but also physicists, biologists, economists and researchers in other fields who are interested in the effectiveness of stochastic theory will find valuable suggestions for their research. In addition, students who are beginning their study and research in stochastic analysis and related fields will find instructive and useful guidance here. This volume is dedicated to Professor Ito on the occasion of his eightieth birthday as a token of deep appreciation for his great achievements and contributions. An introduction to and commentary on the scientific works of Professor Ito are also included.

It s Stochastic Calculus and Probability Theory

Author : Nobuyuki Ikeda
File Size : 53.75 MB
Format : PDF, ePub, Mobi
Download : 926
Read : 1305
Download »
Professor Kiyosi Ito is well known as the creator of the modern theory of stochastic analysis. Although Ito first proposed his theory, now known as Ito's stochastic analysis or Ito's stochastic calculus, about fifty years ago, its value in both pure and applied mathematics is becoming greater and greater. For almost all modern theories at the forefront of probability and related fields, Ito's analysis is indispensable as an essential instrument, and it will remain so in the future. For example, a basic formula, called the Ito formula, is well known and widely used in fields as diverse as physics and economics. This volume contains 27 papers written by world-renowned probability theorists. Their subjects vary widely and they present new results and ideas in the fields where stochastic analysis plays an important role. Also included are several expository articles by well-known experts surveying recent developments. Not only mathematicians but also physicists, biologists, economists and researchers in other fields who are interested in the effectiveness of stochastic theory will find valuable suggestions for their research. In addition, students who are beginning their study and research in stochastic analysis and related fields will find instructive and useful guidance here. This volume is dedicated to Professor Ito on the occasion of his eightieth birthday as a token of deep appreciation for his great achievements and contributions. An introduction to and commentary on the scientific works of Professor Ito are also included.

Brownian Motion Martingales and Stochastic Calculus

Author : Jean-François Le Gall
File Size : 22.23 MB
Format : PDF, ePub, Mobi
Download : 984
Read : 243
Download »
This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.

Ito s Stochastic Calculus and Probability Theory

Author : Nobuyuki Ikeda
File Size : 56.90 MB
Format : PDF
Download : 941
Read : 1065
Download »

Elementary Stochastic Calculus with Finance in View

Author : Thomas Mikosch
File Size : 86.71 MB
Format : PDF, ePub, Docs
Download : 516
Read : 392
Download »
Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black -- Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Ito calculus and/or stochastic finance.

Probability Theory III

Author : IUrii Vasil'evich Prokhorov
File Size : 51.97 MB
Format : PDF, ePub, Docs
Download : 434
Read : 964
Download »
This is a survey of stochastic calculus. The topics covered include: Brownian motion; the Ito integral; stochastic differential equations; Malliavin calculus; the general theory of random processes; and martingale theory.

Introduction to Stochastic Integration

Author : Hui-Hsiung Kuo
File Size : 46.7 MB
Format : PDF
Download : 661
Read : 782
Download »
Also called Ito calculus, the theory of stochastic integration has applications in virtually every scientific area involving random functions. This introductory textbook provides a concise introduction to the Ito calculus. From the reviews: "Introduction to Stochastic Integration is exactly what the title says. I would maybe just add a ‘friendly’ introduction because of the clear presentation and flow of the contents." --THE MATHEMATICAL SCIENCES DIGITAL LIBRARY

Introduction to Stochastic Integration

Author : Chung
File Size : 37.65 MB
Format : PDF, Mobi
Download : 417
Read : 909
Download »
The contents of this monograph approximate the lectures I gave In a graduate course at Stanford University in the first half of 1981. But the material has been thoroughly reorganized and rewritten. The purpose is to present a modern version of the theory of stochastic in tegration, comprising but going beyond the classical theory, yet stopping short of the latest discontinuous (and to some distracting) ramifications. Roundly speaking, integration with respect to a local martingale with continuous paths is the primary object of study here. We have decided to include some results requiring only right continuity of paths, in order to illustrate the general methodology. But it is possible for the reader to skip these extensions without feeling lost in a wilderness of generalities. Basic probability theory inclusive of martingales is reviewed in Chapter 1. A suitably prepared reader should begin with Chapter 2 and consult Chapter 1 only when needed. Occasionally theorems are stated without proof but the treatmcnt is aimed at self-containment modulo the in evitable prerequisites. With considerable regret I have decided to omit a discussion of stochastic differential equations. Instead, some other ap plications of the stochastic calculus are given; in particular Brownian local time is treated in dctail to fill an unapparent gap in the literature. x I PREFACE The applications to storage theory discussed in Section 8. 4 are based on lectures given by J. Michael Harrison in my class.

An Introduction to Stochastic Differential Equations

Author : Lawrence C. Evans
File Size : 46.38 MB
Format : PDF, ePub, Mobi
Download : 698
Read : 537
Download »
These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).

An Introduction to Continuous Time Stochastic Processes

Author : Vincenzo Capasso
File Size : 70.10 MB
Format : PDF, ePub, Docs
Download : 314
Read : 669
Download »
This textbook, now in its fourth edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, it features concrete examples of modeling real-world problems from biology, medicine, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Unlike other books on stochastic methods that specialize in a specific field of applications, this volume examines the ways in which similar stochastic methods can be applied across different fields. Beginning with the fundamentals of probability, the authors go on to introduce the theory of stochastic processes, the Itô Integral, and stochastic differential equations. The following chapters then explore stability, stationarity, and ergodicity. The second half of the book is dedicated to applications to a variety of fields, including finance, biology, and medicine. Some highlights of this fourth edition include a more rigorous introduction to Gaussian white noise, additional material on the stability of stochastic semigroups used in models of population dynamics and epidemic systems, and the expansion of methods of analysis of one-dimensional stochastic differential equations. An Introduction to Continuous-Time Stochastic Processes, Fourth Edition is intended for graduate students taking an introductory course on stochastic processes, applied probability, stochastic calculus, mathematical finance, or mathematical biology. Prerequisites include knowledge of calculus and some analysis; exposure to probability would be helpful but not required since the necessary fundamentals of measure and integration are provided. Researchers and practitioners in mathematical finance, biomathematics, biotechnology, and engineering will also find this volume to be of interest, particularly the applications explored in the second half of the book.

Stochastic Calculus with Applications to Stochastic Portfolio Optimisation

Author : Daniel Michelbrink
File Size : 59.8 MB
Format : PDF, Docs
Download : 910
Read : 1025
Download »
Inhaltsangabe:Introduction: The present paper is about continuous time stochastic calculus and its application to stochastic portfolio selection problems. The paper is divided into two parts: The first part provides the mathematical framework and consists of Chapters 1 and 2, where it gives an insight into the theory of stochastic process and the theory of stochastic calculus. The second part, consisting of Chapters 3 and 4, applies the first part to problems in stochastic portfolio theory and stochastic portfolio optimisation. Chapter 1, "Stochastic Processes", starts with the construction of stochastic process. The significance of Markovian kernels is discussed and some examples of process and emigroups will be given. The simple normal-distribution will be extended to the multi-variate normal distribution, which is needed for introducing the Brownian motion process. Finally, another class of stochastic process is introduced which plays a central role in mathematical finance: the martingale. Chapter 2, "Stochastic Calculus", begins with the introduction of the stochastic integral. This integral is different to the Lebesgue-Stieltjes integral because of the randomness of the integrand and integrator. This is followed by the probably most important theorem in stochastic calculus: It o s formula. It o s formula is of central importance and most of the proofs of Chapters 3 and 4 are not possible without it. We continue with the notion of a stochastic differential equations. We introduce strong and weak solutions and a way to solve stochastic differential equations by removing the drift. The last section of Chapter 2 applies stochastic calculus to stochastic control. We will need stochastic control to solve some portfolio problems in Chapter 4. Chapter 3, "Stochastic Portfolio Theory", deals mainly with the problem of introducing an appropriate model for stock prices and portfolios. These models will be needed in Chapter 4. The first section of Chapter 3 introduces a stock market model, portfolios, the risk-less asset, consumption and labour income processes. The second section, Section 3.2, introduces the notion of relative return as well as portfolio generating functions. Relative return finds application in Chapter 4 where we deal with benchmark optimisation. Benchmark optimisation is optimising a portfolio with respect to a given benchmark portfolio. The final section of Chapter 3 contains some considerations about the long-term behaviour of [...]

Introductory Stochastic Analysis for Finance and Insurance

Author : X. Sheldon Lin
File Size : 30.66 MB
Format : PDF, ePub, Docs
Download : 766
Read : 1054
Download »
Incorporates the many tools needed for modeling and pricing infinance and insurance Introductory Stochastic Analysis for Finance and Insuranceintroduces readers to the topics needed to master and use basicstochastic analysis techniques for mathematical finance. The authorpresents the theories of stochastic processes and stochasticcalculus and provides the necessary tools for modeling and pricingin finance and insurance. Practical in focus, the book's emphasisis on application, intuition, and computation, rather thantheory. Consequently, the text is of interest to graduate students,researchers, and practitioners interested in these areas. While thetext is self-contained, an introductory course in probabilitytheory is beneficial to prospective readers. This book evolved from the author's experience as an instructor andhas been thoroughly classroom-tested. Following an introduction,the author sets forth the fundamental information and tools neededby researchers and practitioners working in the financial andinsurance industries: * Overview of Probability Theory * Discrete-Time stochastic processes * Continuous-time stochastic processes * Stochastic calculus: basic topics The final two chapters, Stochastic Calculus: Advanced Topics andApplications in Insurance, are devoted to more advanced topics.Readers learn the Feynman-Kac formula, the Girsanov's theorem, andcomplex barrier hitting times distributions. Finally, readersdiscover how stochastic analysis and principles are applied inpractice through two insurance examples: valuation of equity-linkedannuities under a stochastic interest rate environment andcalculation of reserves for universal life insurance. Throughout the text, figures and tables are used to help simplifycomplex theory and pro-cesses. An extensive bibliography opens upadditional avenues of research to specialized topics. Ideal for upper-level undergraduate and graduate students, thistext is recommended for one-semester courses in stochastic financeand calculus. It is also recommended as a study guide forprofessionals taking Causality Actuarial Society (CAS) and Societyof Actuaries (SOA) actuarial examinations.

Probability Theory III

Author : Yurij V. Prokhorov
File Size : 57.50 MB
Format : PDF, Docs
Download : 884
Read : 1084
Download »
This volume of the Encyclopaedia is a survey of stochastic calculus, an increasingly important part of probability, authored by well-known experts in the field. The book addresses graduate students and researchers in probability theory and mathematical statistics, as well as physicists and engineers who need to apply stochastic methods.

Stochastic Calculus

Author : Mircea Grigoriu
File Size : 24.56 MB
Format : PDF, ePub, Mobi
Download : 134
Read : 339
Download »
Algebraic, differential, and integral equations are used in the applied sciences, en gineering, economics, and the social sciences to characterize the current state of a physical, economic, or social system and forecast its evolution in time. Generally, the coefficients of and/or the input to these equations are not precisely known be cause of insufficient information, limited understanding of some underlying phe nomena, and inherent randonmess. For example, the orientation of the atomic lattice in the grains of a polycrystal varies randomly from grain to grain, the spa tial distribution of a phase of a composite material is not known precisely for a particular specimen, bone properties needed to develop reliable artificial joints vary significantly with individual and age, forces acting on a plane from takeoff to landing depend in a complex manner on the environmental conditions and flight pattern, and stock prices and their evolution in time depend on a large number of factors that cannot be described by deterministic models. Problems that can be defined by algebraic, differential, and integral equations with random coefficients and/or input are referred to as stochastic problems. The main objective of this book is the solution of stochastic problems, that is, the determination of the probability law, moments, and/or other probabilistic properties of the state of a physical, economic, or social system. It is assumed that the operators and inputs defining a stochastic problem are specified.

Stochastic Calculus for Fractional Brownian Motion and Related Processes

Author : Yuliya Mishura
File Size : 41.72 MB
Format : PDF, ePub, Mobi
Download : 124
Read : 453
Download »
This volume examines the theory of fractional Brownian motion and other long-memory processes. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. It proves that the market with stock guided by the mixed model is arbitrage-free without any restriction on the dependence of the components and deduces different forms of the Black-Scholes equation for fractional market.

Essentials of Stochastic Processes

Author : Kiyosi Itō
File Size : 62.54 MB
Format : PDF, Docs
Download : 190
Read : 676
Download »
This book is an English translation of Kiyosi Ito's monograph published in Japanese in 1957. It gives a unified and comprehensive account of additive processes (or Levy processes), stationary processes, and Markov processes, which constitute the three most important classes of stochastic processes. Written by one of the leading experts in the field, this volume presents to the reader lucid explanations of the fundamental concepts and basic results in each of these three major areas of the theory of stochastic processes. With the requirements limited to an introductory graduate course on analysis (especially measure theory) and basic probability theory, this book is an excellent text for any graduate course on stochastic processes. Kiyosi Ito is famous throughout the world for his work on stochastic integrals (including the Ito formula), but he has made substantial contributions to other areas of probability theory as well, such as additive processes, stationary processes, and Markov processes (especially diffusion processes), which are topics covered in this book. For his contributions and achievements, he has received, among others, the Wolf Prize, the Japan Academy Prize, and the Kyoto Prize.

Introduction To Stochastic Calculus With Applications 3rd Edition

Author : Klebaner Fima C
File Size : 27.27 MB
Format : PDF, Docs
Download : 249
Read : 332
Download »
This book presents a concise and rigorous treatment of stochastic calculus. It also gives its main applications in finance, biology and engineering. In finance, the stochastic calculus is applied to pricing options by no arbitrage. In biology, it is applied to populations' models, and in engineering it is applied to filter signal from noise. Not everything is proved, but enough proofs are given to make it a mathematically rigorous exposition.This book aims to present the theory of stochastic calculus and its applications to an audience which possesses only a basic knowledge of calculus and probability. It may be used as a textbook by graduate and advanced undergraduate students in stochastic processes, financial mathematics and engineering. It is also suitable for researchers to gain working knowledge of the subject. It contains many solved examples and exercises making it suitable for self study.In the book many of the concepts are introduced through worked-out examples, eventually leading to a complete, rigorous statement of the general result, and either a complete proof, a partial proof or a reference. Using such structure, the text will provide a mathematically literate reader with rapid introduction to the subject and its advanced applications. The book covers models in mathematical finance, biology and engineering. For mathematicians, this book can be used as a first text on stochastic calculus or as a companion to more rigorous texts by a way of examples and exercises./a

Probability Theory and Stochastic Processes

Author : Pierre Brémaud
File Size : 72.73 MB
Format : PDF
Download : 256
Read : 1040
Download »
The ultimate objective of this book is to present a panoramic view of the main stochastic processes which have an impact on applications, with complete proofs and exercises. Random processes play a central role in the applied sciences, including operations research, insurance, finance, biology, physics, computer and communications networks, and signal processing. In order to help the reader to reach a level of technical autonomy sufficient to understand the presented models, this book includes a reasonable dose of probability theory. On the other hand, the study of stochastic processes gives an opportunity to apply the main theoretical results of probability theory beyond classroom examples and in a non-trivial manner that makes this discipline look more attractive to the applications-oriented student. One can distinguish three parts of this book. The first four chapters are about probability theory, Chapters 5 to 8 concern random sequences, or discrete-time stochastic processes, and the rest of the book focuses on stochastic processes and point processes. There is sufficient modularity for the instructor or the self-teaching reader to design a course or a study program adapted to her/his specific needs. This book is in a large measure self-contained.

Game Theoretic Foundations for Probability and Finance

Author : Glenn Shafer
File Size : 75.87 MB
Format : PDF, ePub, Docs
Download : 108
Read : 727
Download »
Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity premium, and portfolio theory. Game-Theoretic Foundations for Probability and Finance is a book of research. It is also a teaching resource. Each chapter is supplemented with carefully designed exercises and notes relating the new theory to its historical context. Praise from early readers “Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for prediction, statistics and mathematical finance without stochastic assumptions. The authors set out their theory in great detail, resulting in what is definitely one of the most important books on the foundations of probability to have appeared in the last few decades.” – Peter Grünwald, CWI and University of Leiden “Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for probability and for finance. They have included an account of the tremendous growth that has occurred since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to continuous-time finance. This new book will undoubtedly spur a better understanding of the foundations of these very important fields, and we should all be grateful to its authors.” – Ioannis Karatzas, Columbia University

Stochastic Processes Theory and Methods

Author : D N Shanbhag
File Size : 27.55 MB
Format : PDF, Mobi
Download : 819
Read : 450
Download »
J. Neyman, one of the pioneers in laying the foundations of modern statistical theory, stressed the importance of stochastic processes in a paper written in 1960 in the following terms: Currently in the period of dynamic indeterminism in science, there is hardly a serious piece of research, if treated realistically, does not involve operations on stochastic processes. Arising from the need to solve practical problems, several major advances have taken place in the theory of stochastic processes and their applications. Books by Doob (1953; J. Wiley and Sons), Feller (1957, 1966; J. Wiley and Sons) and Loeve (1960; D. van Nostrand and Col., Inc.) among others, have created growing awareness and interest in the use of stochastic processes in scientific and technological studies.The literature on stochastic processes is very extensive and is distributed in several books and journals.