Search results for: mastering-exploratory-analysis-with-pandas

Mastering Exploratory Analysis with pandas

Author : Harish Garg
File Size : 77.28 MB
Format : PDF, ePub, Docs
Download : 145
Read : 1063
Download »
Explore Python frameworks like pandas, Jupyter notebooks, and Matplotlib to build data pipelines and data visualization Key Features Learn to set up data analysis pipelines with pandas and Jupyter notebooks Effective techniques for data selection, manipulation, and visualization Introduction to Matplotlib for interactive data visualization using charts and plots Book Description The pandas is a Python library that lets you manipulate, transform, and analyze data. It is a popular framework for exploratory data visualization and analyzing datasets and data pipelines based on their properties. This book will be your practical guide to exploring datasets using pandas. You will start by setting up Python, pandas, and Jupyter Notebooks. You will learn how to use Jupyter Notebooks to run Python code. We then show you how to get data into pandas and do some exploratory analysis, before learning how to manipulate and reshape data using pandas methods. You will also learn how to deal with missing data from your datasets, how to draw charts and plots using pandas and Matplotlib, and how to create some effective visualizations for your audience. Finally, you will wrapup your newly gained pandas knowledge by learning how to import data out of pandas into some popular file formats. By the end of this book, you will have a better understanding of exploratory analysis and how to build exploratory data pipelines with Python. What you will learn Learn how to read different kinds of data into pandas DataFrames for data analysis Manipulate, transform, and apply formulas to data imported into pandas DataFrames Use pandas to analyze and visualize different kinds of data to gain real-world insights Extract transformed data form pandas DataFrames and convert it into the formats your application expects Manipulate model time-series data, perform algorithmic trading, derive results on fixed and moving windows, and more Effective data visualization using Matplotlib Who this book is for If you are a budding data scientist looking to learn the popular pandas library, or a Python developer looking to step into the world of data analysis, this book is the ideal resource you need to get started. Some programming experience in Python will be helpful to get the most out of this course

Mastering pandas

Author : Ashish Kumar
File Size : 71.28 MB
Format : PDF, Kindle
Download : 569
Read : 707
Download »
Perform advanced data manipulation tasks using pandas and become an expert data analyst. Key Features Manipulate and analyze your data expertly using the power of pandas Work with missing data and time series data and become a true pandas expert Includes expert tips and techniques on making your data analysis tasks easier Book Description pandas is a popular Python library used by data scientists and analysts worldwide to manipulate and analyze their data. This book presents useful data manipulation techniques in pandas to perform complex data analysis in various domains. An update to our highly successful previous edition with new features, examples, updated code, and more, this book is an in-depth guide to get the most out of pandas for data analysis. Designed for both intermediate users as well as seasoned practitioners, you will learn advanced data manipulation techniques, such as multi-indexing, modifying data structures, and sampling your data, which allow for powerful analysis and help you gain accurate insights from it. With the help of this book, you will apply pandas to different domains, such as Bayesian statistics, predictive analytics, and time series analysis using an example-based approach. And not just that; you will also learn how to prepare powerful, interactive business reports in pandas using the Jupyter notebook. By the end of this book, you will learn how to perform efficient data analysis using pandas on complex data, and become an expert data analyst or data scientist in the process. What you will learn Speed up your data analysis by importing data into pandas Keep relevant data points by selecting subsets of your data Create a high-quality dataset by cleaning data and fixing missing values Compute actionable analytics with grouping and aggregation in pandas Master time series data analysis in pandas Make powerful reports in pandas using Jupyter notebooks Who this book is for This book is for data scientists, analysts and Python developers who wish to explore advanced data analysis and scientific computing techniques using pandas. Some fundamental understanding of Python programming and familiarity with the basic data analysis concepts is all you need to get started with this book.

Articulation and Phonological Disorders

Author : John E. Bernthal
File Size : 82.12 MB
Format : PDF, ePub
Download : 990
Read : 648
Download »
The most comprehensive book on clinical phonology, "Articulation and Phonological Disorders" presents a thorough review of information important to the study of clinical phonology. This text does not prescribe a single approach to phonological disorders, but rather presents an eclectic perspective on the nature, assessment, and treatment of this type of communication impairment. The text includes an introduction to the normal aspects of speech sound articulation, normal phonological development, factors related to the presence of phonological disorders, the assessment and remediation of phonological disorders, phonology as it relates to language and dialectal variations, and a chapter on phonological awareness. Discussion questions are presented with each chapter and a new case study is included in the assessment and remediation chapters. As in past editions, this text is primarily concerned with those phonological disorders not etiologically associated with known or obvious sensory, structural, or neuromotor deficits. New to this Edition: Updated to include new ideas, concepts, and issues advanced since the previous edition. Includes a new case study that demonstrates how the authors handle a specific client with a phonological disorder and encourages the reader to reflect on these strategies. A new chapter (9) on phonological awareness, co-authored by Laura Justice and C. Melanie Schuele is incorporated. Changes in organizational structure have been made for ease of use. For additional study and review resources, visit our Communication Disorders SuperSite at: "Better grades are just a click away!"

Hands On Data Analysis with Pandas

File Size : 88.11 MB
Format : PDF, ePub, Docs
Download : 117
Read : 633
Download »

Python Data Analysis

Author : Avinash Navlani
File Size : 85.38 MB
Format : PDF, Kindle
Download : 641
Read : 943
Download »
Understand data analysis pipelines using machine learning algorithms and techniques with this practical guide Key Features Prepare and clean your data to use it for exploratory analysis, data manipulation, and data wrangling Discover supervised, unsupervised, probabilistic, and Bayesian machine learning methods Get to grips with graph processing and sentiment analysis Book Description Data analysis enables you to generate value from small and big data by discovering new patterns and trends, and Python is one of the most popular tools for analyzing a wide variety of data. With this book, you'll get up and running using Python for data analysis by exploring the different phases and methodologies used in data analysis and learning how to use modern libraries from the Python ecosystem to create efficient data pipelines. Starting with the essential statistical and data analysis fundamentals using Python, you'll perform complex data analysis and modeling, data manipulation, data cleaning, and data visualization using easy-to-follow examples. You'll then understand how to conduct time series analysis and signal processing using ARMA models. As you advance, you'll get to grips with smart processing and data analytics using machine learning algorithms such as regression, classification, Principal Component Analysis (PCA), and clustering. In the concluding chapters, you'll work on real-world examples to analyze textual and image data using natural language processing (NLP) and image analytics techniques, respectively. Finally, the book will demonstrate parallel computing using Dask. By the end of this data analysis book, you'll be equipped with the skills you need to prepare data for analysis and create meaningful data visualizations for forecasting values from data. What you will learn Explore data science and its various process models Perform data manipulation using NumPy and pandas for aggregating, cleaning, and handling missing values Create interactive visualizations using Matplotlib, Seaborn, and Bokeh Retrieve, process, and store data in a wide range of formats Understand data preprocessing and feature engineering using pandas and scikit-learn Perform time series analysis and signal processing using sunspot cycle data Analyze textual data and image data to perform advanced analysis Get up to speed with parallel computing using Dask Who this book is for This book is for data analysts, business analysts, statisticians, and data scientists looking to learn how to use Python for data analysis. Students and academic faculties will also find this book useful for learning and teaching Python data analysis using a hands-on approach. A basic understanding of math and working knowledge of the Python programming language will help you get started with this book.

Jupyter for Data Science

Author : Dan Toomey
File Size : 87.52 MB
Format : PDF
Download : 114
Read : 204
Download »
Your one-stop guide to building an efficient data science pipeline using Jupyter About This Book Get the most out of your Jupyter notebook to complete the trickiest of tasks in Data Science Learn all the tasks in the data science pipeline—from data acquisition to visualization—and implement them using Jupyter Get ahead of the curve by mastering all the applications of Jupyter for data science with this unique and intuitive guide Who This Book Is For This book targets students and professionals who wish to master the use of Jupyter to perform a variety of data science tasks. Some programming experience with R or Python, and some basic understanding of Jupyter, is all you need to get started with this book. What You Will Learn Understand why Jupyter notebooks are a perfect fit for your data science tasks Perform scientific computing and data analysis tasks with Jupyter Interpret and explore different kinds of data visually with charts, histograms, and more Extend SQL's capabilities with Jupyter notebooks Combine the power of R and Python 3 with Jupyter to create dynamic notebooks Create interactive dashboards and dynamic presentations Master the best coding practices and deploy your Jupyter notebooks efficiently In Detail Jupyter Notebook is a web-based environment that enables interactive computing in notebook documents. It allows you to create documents that contain live code, equations, and visualizations. This book is a comprehensive guide to getting started with data science using the popular Jupyter notebook. If you are familiar with Jupyter notebook and want to learn how to use its capabilities to perform various data science tasks, this is the book for you! From data exploration to visualization, this book will take you through every step of the way in implementing an effective data science pipeline using Jupyter. You will also see how you can utilize Jupyter's features to share your documents and codes with your colleagues. The book also explains how Python 3, R, and Julia can be integrated with Jupyter for various data science tasks. By the end of this book, you will comfortably leverage the power of Jupyter to perform various tasks in data science successfully. Style and approach This book is a perfect blend of concepts and practical examples, written in a way that is very easy to understand and implement. It follows a logical flow where you will be able to build on your understanding of the different Jupyter features with every chapter.

Mastering Numerical Computing with NumPy

Author : Umit Mert Cakmak
File Size : 61.67 MB
Format : PDF, ePub
Download : 910
Read : 1333
Download »
Enhance the power of NumPy and start boosting your scientific computing capabilities Key Features Grasp all aspects of numerical computing and understand NumPy Explore examples to learn exploratory data analysis (EDA), regression, and clustering Access NumPy libraries and use performance benchmarking to select the right tool Book Description NumPy is one of the most important scientific computing libraries available for Python. Mastering Numerical Computing with NumPy teaches you how to achieve expert level competency to perform complex operations, with in-depth coverage of advanced concepts. Beginning with NumPy's arrays and functions, you will familiarize yourself with linear algebra concepts to perform vector and matrix math operations. You will thoroughly understand and practice data processing, exploratory data analysis (EDA), and predictive modeling. You will then move on to working on practical examples which will teach you how to use NumPy statistics in order to explore US housing data and develop a predictive model using simple and multiple linear regression techniques. Once you have got to grips with the basics, you will explore unsupervised learning and clustering algorithms, followed by understanding how to write better NumPy code while keeping advanced considerations in mind. The book also demonstrates the use of different high-performance numerical computing libraries and their relationship with NumPy. You will study how to benchmark the performance of different configurations and choose the best for your system. By the end of this book, you will have become an expert in handling and performing complex data manipulations. What you will learn Perform vector and matrix operations using NumPy Perform exploratory data analysis (EDA) on US housing data Develop a predictive model using simple and multiple linear regression Understand unsupervised learning and clustering algorithms with practical use cases Write better NumPy code and implement the algorithms from scratch Perform benchmark tests to choose the best configuration for your system Who this book is for Mastering Numerical Computing with NumPy is for you if you are a Python programmer, data analyst, data engineer, or a data science enthusiast, who wants to master the intricacies of NumPy and build solutions for your numeric and scientific computational problems. You are expected to have familiarity with mathematics to get the most out of this book.

Mastering Machine Learning with Python in Six Steps

Author : Manohar Swamynathan
File Size : 23.7 MB
Format : PDF
Download : 144
Read : 582
Download »
Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version’s approach is based on the “six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable Python 3 packages. You’ll start with the fundamentals of Python 3 programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You’ll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search, Bayesian optimization, and the noise reduction technique for IoT data. Finally, you’ll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage. What You'll Learn Understand machine learning development and frameworks Assess model diagnosis and tuning in machine learning Examine text mining, natuarl language processing (NLP), and recommender systems Review reinforcement learning and CNN Who This Book Is For Python developers, data engineers, and machine learning engineers looking to expand their knowledge or career into machine learning area.

Mastering Predictive Analytics with Python

Author : Joseph Babcock
File Size : 38.1 MB
Format : PDF, ePub, Mobi
Download : 441
Read : 1096
Download »
Exploit the power of data in your business by building advanced predictive modeling applications with Python About This Book Master open source Python tools to build sophisticated predictive models Learn to identify the right machine learning algorithm for your problem with this forward-thinking guide Grasp the major methods of predictive modeling and move beyond the basics to a deeper level of understanding Who This Book Is For This book is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move from a conceptual understanding of advanced analytics to an expert in designing and building advanced analytics solutions using Python. You're expected to have basic development experience with Python. What You Will Learn Gain an insight into components and design decisions for an analytical application Master the use Python notebooks for exploratory data analysis and rapid prototyping Get to grips with applying regression, classification, clustering, and deep learning algorithms Discover the advanced methods to analyze structured and unstructured data Find out how to deploy a machine learning model in a production environment Visualize the performance of models and the insights they produce Scale your solutions as your data grows using Python Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis In Detail The volume, diversity, and speed of data available has never been greater. Powerful machine learning methods can unlock the value in this information by finding complex relationships and unanticipated trends. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications to deliver insights that are of tremendous value to their organizations. In Mastering Predictive Analytics with Python, you will learn the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates not only how these methods work, but how to implement them in practice. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring the insights of predictive modeling to life Style and approach This book emphasizes on explaining methods through example data and code, showing you templates that you can quickly adapt to your own use cases. It focuses on both a practical application of sophisticated algorithms and the intuitive understanding necessary to apply the correct method to the problem at hand. Through visual examples, it also demonstrates how to convey insights through insightful charts and reporting.