Search results for: molecular-quantum-electrodynamics

Molecular Quantum Electrodynamics

Author : D. P. Craig
File Size : 51.18 MB
Format : PDF, ePub, Docs
Download : 952
Read : 544
Download »
Self-contained, systematic introduction examines application of quantum electrodynamics to interpretation of optical experiments on atoms and molecules and explains the quantum theory of electromagnetic radiation and its interaction with matter.

Molecular Quantum Electrodynamics

Author : Akbar Salam
File Size : 50.70 MB
Format : PDF, Docs
Download : 910
Read : 511
Download »
The theory of molecular quantum electrodynamics and itsapplication to a number of intermolecular interactions Considerable advances have taken place in quantumelectrodynamical theory of intermolecular forces. Virtuallyimpacting all areas of science, molecular quantum electrodynamics(MQED) has been successfully applied to numerous radiation-moleculeand molecule-molecule processes. Molecular QuantumElectrodynamics delves in depth into the MQED theory oflong-range intermolecular forces, offering a variety of physicalviewpoints and calculational techniques. The text provides an introduction and background on: Field theoretic treatments, including the second quantizedMaxwell field formulation Intermolecular potential and a semi-classical perturbationtheory treatment of short- and long-range forces Retarded dispersion interactions including discriminatoryforces Intermolecular interactions in a radiation field Energy shift and transfer rate in relation to specific two- andmany-body forces Molecular Quantum Electrodynamics provides an essentialresource for chemists, physicists, biophysicists, materialsscientists, and nanochemists interested in exploring the theory andapplication of MQED.

Molecular Quantum Electrodynamics An Introduction to Radiation Molecule Interactions

Author : DP. Craig
File Size : 24.26 MB
Format : PDF, ePub
Download : 847
Read : 1067
Download »

On the Application of Molecular Quantum Electrodynamics to the Optical Activity of Tenuous Media

Author : William Patrick Healy
File Size : 89.99 MB
Format : PDF, Mobi
Download : 420
Read : 706
Download »

Applied Molecular Quantum Electrodynamics

Author : J. S. Ford
File Size : 53.88 MB
Format : PDF, ePub, Docs
Download : 207
Read : 1029
Download »

Intermolecular Interactions Using Molecular Quantum Electrodynamics

Author :
File Size : 22.10 MB
Format : PDF, ePub
Download : 688
Read : 656
Download »

Optical Harmonics in Molecular Systems

Author : Philip Allcock
File Size : 40.13 MB
Format : PDF, ePub
Download : 393
Read : 1074
Download »
In recent years the generation of optical harmonics in molecular systems has become an area of increasing interest for a number of reasons. First, many organic crystals and polymeric solids prove not only to have usefully large optical nonlinearities but also to be surprisingly robust and thermally stable. Consequently the fabrication of organic materials for laser frequency conversion has become very much a growth area. At interfaces and in partially ordered systems, harmonic generation is now of considerable scientific interest through the detailed structural information it affords. And in molecular gases and liquids, processes of optical harmonic conversion present a powerful tool for the study of both static and dynamic effects of molecular orientation. Where the detailed nonlinear optical response of molecules is required, the application of molecular quantum electrodynamics (QED) brings both rigour and conceptual facility. Using this approach the authors address topics of direct experimental concern in a general formulation of theory for optical harmonics, with a particular focus on quantum optical and molecular aspects. A detailed basis is provided for the applications, enabling the characteristic features of optical nonlinearity to be examined in general terms. A great many of the optical phenomena subsequently addressed find wide application in nonlinear optics and chemical physics. Specifically, the book deals with coherent harmonic generation, both within and at interfaces between different media. It addresses elastic second harmonic (Hyper-Rayleigh) light scattering as well as the inelastic case normally referred to as Hyper-Raman scattering. Full and detailed tables and results are provided for the analysis of experimental observations.

Alternate Diagrammatic Approaches for the Calculation of Intermolecular Interactions Using Molecular Quantum Electrodynamics

Author : Bridget W. Alligood
File Size : 66.72 MB
Format : PDF, ePub
Download : 231
Read : 1032
Download »

Relativistic Quantum Theory of Atoms and Molecules

Author : Ian P Grant
File Size : 65.55 MB
Format : PDF, ePub
Download : 531
Read : 1315
Download »
This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.

Advanced Molecular Quantum Mechanics

Author : R. Moss
File Size : 74.84 MB
Format : PDF, ePub
Download : 950
Read : 673
Download »
This book is primarily intended for graduate chemists and chemical physicists. Indeed, it is based on a graduate course that I give in the Chemistry Depart ment of Southampton University. Nowadays undergraduate chemistry courses usually include an introduction to quantum mechanics with particular reference to molecular properties and there are a number of excellent textbooks aimed specifically at undergraduate chemists. In valence theory and molecular spectroscopy physical concepts are often encountered that are normally taken on trust. For example, electron spin and the anomalous magnetic moment of the electron are usually accepted as postulates, although they are well understood by physicists. In addition, the advent of new techniques has led to experimental situations that can only be accounted for adequately by relatively sophisticated physical theory. Relativis tic corrections to molecular orbital energies are needed to explain X-ray photo electron spectra, while the use oflasers can give rise to multiphoton transitions, which are not easy to understand using the classical theory of radiation. Of course, the relevant equations may be extracted from the literature, but, if the underlying physics is not understood, this is a practice that is at best dissatisfy ing and at worst dangerous. One instance where great care must be taken is in the use of spectroscopically determined parameters to test the accuracy of elec tronic wave functions.

New Trends in Quantum Electrodynamics

Author : Roberto Passante
File Size : 89.24 MB
Format : PDF, ePub, Mobi
Download : 910
Read : 1327
Download »
This book collects research and review articles covering some recent trends in nonrelativistic quantum electrodynamics, specifically the interaction of atoms or molecules within the quantum electromagnetic radiation field and the related physical effects. Specific topics covered are: two- and three-body dispersion interactions between atoms and molecules, both in the nonretarded van der Waals and the retarded Casimir–Polder regime; vacuum field fluctuations of the electromagnetic field and their effect in atomic systems; dispersion interactions between uniformly accelerating atoms and relation with the Fulling–Davies–Unruh effect; dynamics of atomic systems under strong electromagnetic fields; symmetries in quantum electrodynamics; and open quantum systems.

Optical Nanomanipulation

Author : David L Andrews
File Size : 86.9 MB
Format : PDF, Kindle
Download : 694
Read : 1018
Download »
This book provides a broad introductory survey of this remarkable field, aiming to establish and clearly differentiate its physical principles, and also to provide a snapshot portrait of many of the most prominent current applications. Primary emphasis is placed on developing an understanding of the fundamental photonic origin behind the mechanism that operates in each type of effect. To this end, the first few chapters introduce and develop core theory, focusing on the physical significance and source of the most salient parameters, and revealing the detailed interplay between the key material and optical properties. Where appropriate, both classical and photonic (quantum mechanical) representations are discussed. The number of equations is purposely kept to a minimum, and only a broad background in optical physics is assumed. With copious examples and illustrations, each of the subsequent chapters then sets out to explain and exhibit the main features and uses of the various distinct types of mechanism that can be involved in optical nanomanipulation, including some of the very latest developments. To complete the scene, we also briefly discuss applications to larger, biological particles. Overall, this book aims to deliver to the non-specialist an amenable introduction to the technically more advanced literature on individual manipulation methods. Full references to the original research papers are given throughout, and an up-to-date bibliography is provided for each chapter, which directs the reader to other selected, more specialised sources.

Handbook of Molecular Physics and Quantum Chemistry 3 Volume Set

Author : Stephen Wilson
File Size : 47.82 MB
Format : PDF, Mobi
Download : 310
Read : 1268
Download »
Published in three volumes, this comprehensive reference work brings together in a single source for the first time, a detailed presentation of the most important theoretical concepts and methods for the study of molecules and molecular systems. The logical format of the Handbook allows the reader to progress from the foundations of the field to the most important and exciting areas of current research. Edited and written by an outstanding international team, and containing over 100 articles written by more than 50 contributors, it will be invaluable for both the expert researcher and the graduate student or postdoctoral worker active in any of the broad range of fields where these concepts and methods are important. Comprises three themed volumes: * Fundamentals * Molecular Electronic Structure * Molecules in the Physico-Chemical Environment: Spectroscopy, Dynamics and Bulk Properties * Presents detailed articles covering the key topics, presented in a didactic manner * Focuses both on theory and the relation of experiment to theory Volume 1, Fundamentals presents the foundations of molecular physics and quantum chemistry. It consists of 7 parts arranged as follows:- Part 1 Introduction Part 2 Elements of Quantum Mechanics Part 3 Orbital Models for Atomic, Molecular and Crystal Structure Part 4 Symmetry Groups and Molecular Structure Part 5 Second Quantization and Many-Body Methods Part 6 Approximate Separation of Electronic and Nuclear Motion Part 7 Quantum Electrodynamics of Atoms and Molecules The central problem of molecular physics and quantum chemistry is the description of atomic and molecular electronic structure. The development of appropriate models for the description of the effects of electron correlation and of relativity are key components of the analysis. Volume 2, Molecular Electronic Structure, addresses these topics, and consists of 7 parts arranged as follows: Part 1 Approximation methods Part 2 Orbital Models and Generalized Product Functions Part 3 Electron correlation Part 4 Relativistic molecular electronic structure Part 5 Electronic structure of large molecules Part 6 Computational quantum chemistry Part 7 Visualization and interpretation of molecular electronic structure In reality no molecular system exists in isolation. Molecules interact with other atoms and molecules, and with their environment. Volume 3, Molecules in the Physico-Chemical Environment - Spectroscopy, Dynamics and Bulk Properties, consists of 7 parts arranged as follows:- Part 1 Response theory and propagator methods Part 2 Interactions between molecules Part 3 Molecules in different environments Part 4 Molecular Electronic spectra Part 5 Atomic Spectroscopy and Molecular Vibration-Rotation Spectroscopy Part 6 Molecular dynamics and dynamical processes Part 7 Bulk properties

Polaritonic Chemistry

Author : Javier Galego Pascual​
File Size : 81.32 MB
Format : PDF
Download : 936
Read : 421
Download »
Polaritonic chemistry is an emergent interdisciplinary field in which the strong interaction of organic molecules with confined electromagnetic field modes is exploited in order to manipulate the chemical structure and reactions of the system. In the regime of strong light-matter coupling the interaction with the electromagnetic vacuum obliges us to redefine the concept of a molecule and consider the hybrid system as a whole. This thesis builds on the foundations of chemistry and quantum electrodynamics in order to provide a theoretical framework to describe these organic light-matter hybrids. By fully embracing the structural complexity of molecules, this theory allows us to employ long-established quantum chemistry methods to understand polaritonic chemistry. This leads to predictions of substantial structural changes in organic molecules and the possibility of significantly influencing chemical reactions both in the excited and ground states of the system.

Non Relativistic QED Theory of the van der Waals Dispersion Interaction

Author : Akbar Salam
File Size : 80.75 MB
Format : PDF, Mobi
Download : 742
Read : 641
Download »
This book provides details of the calculation of the interaction between two neutral polarizable atoms or molecules using molecular quantum electrodynamics (QED). To better understand the origin of this force, it briefly outlines molecular QED theory, the well-known van der Waals dispersion potential first evaluated by Casimir and Polder, who accounted for retardation effects. It presents different calculation schemes for the evaluation of the dispersion potential and also discusses energy shifts involving electric quadrupole and octupole moments, along with discriminatory dispersion potentials. Further, it explores in detail non-additive dispersion interaction energies between three-bodies, as well as the effects of higher multipole moment correction terms, and provides results for specific geometries such as collinear and equilateral triangles. Lastly, it computes near and far-zone asymptotic limits for both pair and many-body potentials, with the former shown to agree with less rigorous semi-classical calculations.

Handbook of Molecular Physics and Quantum Chemistry 3 Volume Set

Author :
File Size : 20.48 MB
Format : PDF, Docs
Download : 132
Read : 754
Download »
Published in three volumes, this comprehensive reference work brings together in a single source for the first time, a detailed presentation of the most important theoretical concepts and methods for the study of molecules and molecular systems. The logical format of the Handbook allows the reader to progress from the foundations of the field to the most important and exciting areas of current research. Edited and written by an outstanding international team, and containing over 100 articles written by more than 50 contributors, it will be invaluable for both the expert researcher and the graduate student or postdoctoral worker active in any of the broad range of fields where these concepts and methods are important. Comprises three themed volumes: * Fundamentals * Molecular Electronic Structure * Molecules in the Physico-Chemical Environment: Spectroscopy, Dynamics and Bulk Properties * Presents detailed articles covering the key topics, presented in a didactic manner * Focuses both on theory and the relation of experiment to theory Volume 1, Fundamentals presents the foundations of molecular physics and quantum chemistry. It consists of 7 parts arranged as follows:- Part 1 Introduction Part 2 Elements of Quantum Mechanics Part 3 Orbital Models for Atomic, Molecular and Crystal Structure Part 4 Symmetry Groups and Molecular Structure Part 5 Second Quantization and Many-Body Methods Part 6 Approximate Separation of Electronic and Nuclear Motion Part 7 Quantum Electrodynamics of Atoms and Molecules The central problem of molecular physics and quantum chemistry is the description of atomic and molecular electronic structure. The development of appropriate models for the description of the effects of electron correlation and of relativity are key components of the analysis. Volume 2, Molecular Electronic Structure, addresses these topics, and consists of 7 parts arranged as follows: Part 1 Approximation methods Part 2 Orbital Models and Generalized Product Functions Part 3 Electron correlation Part 4 Relativistic molecular electronic structure Part 5 Electronic structure of large molecules Part 6 Computational quantum chemistry Part 7 Visualization and interpretation of molecular electronic structure In reality no molecular system exists in isolation. Molecules interact with other atoms and molecules, and with their environment. Volume 3, Molecules in the Physico-Chemical Environment - Spectroscopy, Dynamics and Bulk Properties, consists of 7 parts arranged as follows:- Part 1 Response theory and propagator methods Part 2 Interactions between molecules Part 3 Molecules in different environments Part 4 Molecular Electronic spectra Part 5 Atomic Spectroscopy and Molecular Vibration-Rotation Spectroscopy Part 6 Molecular dynamics and dynamical processes Part 7 Bulk properties

Basics of Quantum Electrodynamics

Author : Ioan Merches
File Size : 45.33 MB
Format : PDF, Docs
Download : 896
Read : 1035
Download »
Quantum electrodynamics (QED) is the branch of relativistic quantum field theory that deals specifically with the interactions between charged particles. It is widely used to solve problems in many areas of physics, such as elementary particles, atomic and molecular systems, and solid state physics. This accessible text, Basics of Quantum Electrodynamics, supplies a solid foundation in this dynamic area of physics, making a direct connection to the concepts of quantum mechanics familiar to the advanced undergraduate student. Chapters cover the general theory of free fields and the quantization of the scalar, electromagnetic, and spinorial fields, which prepares readers for understanding field interactions. The authors describe the general theory of field interactions, introducing the scattering matrix and the Feynman–Dyson graphs. They then discuss divergence-free second-order processes, such as Compton and Møller scattering, followed by divergent second-order processes, which cover vacuum polarization and mass and charge renormalization. Providing a modern, informative textbook, this volume illustrates the intimate connection between quantum mechanics and QED in two basic steps: the quantization of free fields, followed by the theory of their interactions. The text contains solved problems to facilitate the application of the theory, as well as a useful appendix on the theory of distributions. The step-by-step description of the quantization of various fields and the clear presentation of the most important interaction processes in QED make this textbook a useful guide for those studying physics at both the graduate and undergraduate level, as well as a reference for teachers and researchers in the field.

Cavity Quantum Electrodynamics

Author : Paul R. Berman
File Size : 38.13 MB
Format : PDF, Mobi
Download : 747
Read : 976
Download »
Quantum electrodynamics (QED), a theory about radiation fields, is the most accurate and widely applicable physical theory currently known. Cavity QED examines what happens to those radiation fields when they are confined to a cavity (a cavity can be thought of as an atomic pot-hole). Confined radiation fields interact quite differently with atoms than unconfined fields. This difference gives cavity QED the potential for some important applications that ordinary QED does not have, such as applications to laser technology, and to the high precision measurement of time and frequency.

Molecular Photophysics and Spectroscopy

Author : David L Andrews
File Size : 29.41 MB
Format : PDF, Kindle
Download : 681
Read : 609
Download »
This book provides a fresh, photon‐based description of modern molecular spectroscopy and photophysics, with applications drawn from chemistry, biology, physics and materials science. The concise and detailed approach includes some of the most recent devel

Quantum Systems in Chemistry and Physics

Author :
File Size : 41.61 MB
Format : PDF, Mobi
Download : 814
Read : 973
Download »
The description of quantum systems is fundamental to an understanding of many problems in chemistry and physics. This volume records a representative slection of the papers delivered at the second European Workshop on Quantum Systems in Chemistry and Physics which was held at Jesus College, Oxford, April 6-9, 1997. The purpose of this international Workshop was to bring together chemists and physicists with a common interest--the quantum mechanical many-body problem--and to encourage collaboration and exchange of ideas on the fundamentals by promoting innovative theory and conceptual development rather than improvements in computatorial techniques and routine applications. Key Features * Covers the following topics: * Density matrices and density functional theory * Electron correlation * Relativistic effects * Valence theory * Nuclear motion * Response theory * Condensed matter * Chemical reactions