Search results for: multimedia-data-mining-and-analytics

Multimedia Data Mining and Analytics

Author : Aaron K. Baughman
File Size : 86.72 MB
Format : PDF, ePub
Download : 211
Read : 705
Download »
This book provides fresh insights into the cutting edge of multimedia data mining, reflecting how the research focus has shifted towards networked social communities, mobile devices and sensors. The work describes how the history of multimedia data processing can be viewed as a sequence of disruptive innovations. Across the chapters, the discussion covers the practical frameworks, libraries, and open source software that enable the development of ground-breaking research into practical applications. Features: reviews how innovations in mobile, social, cognitive, cloud and organic based computing impacts upon the development of multimedia data mining; provides practical details on implementing the technology for solving real-world problems; includes chapters devoted to privacy issues in multimedia social environments and large-scale biometric data processing; covers content and concept based multimedia search and advanced algorithms for multimedia data representation, processing and visualization.

Mining Text Data

Author : Charu C. Aggarwal
File Size : 60.65 MB
Format : PDF
Download : 966
Read : 1008
Download »
Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.

Multimedia Data Mining and Knowledge Discovery

Author : Valery A. Petrushin
File Size : 66.39 MB
Format : PDF
Download : 129
Read : 562
Download »
This volume provides an overview of multimedia data mining and knowledge discovery and discusses the variety of hot topics in multimedia data mining research. It describes the objectives and current tendencies in multimedia data mining research and their applications. Each part contains an overview of its chapters and leads the reader with a structured approach through the diverse subjects in the field.

Big Data Analytics for Large Scale Multimedia Search

Author : Stefanos Vrochidis
File Size : 38.71 MB
Format : PDF, Docs
Download : 154
Read : 1180
Download »
A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multimedia search. This book addresses that need, covering the area of multimedia retrieval and placing a special emphasis on scalability. It reports the recent works in large scale multimedia search, including research methods and applications, and is structured so that readers with basic knowledge can grasp the core message while still allowing experts and specialists to drill further down into the analytical sections. Big Data Analytics for Large-Scale Multimedia Search covers: representation learning, concept and event-based video search in large collections; big data multimedia mining, large scale video understanding, big multimedia data fusion, large-scale social multimedia analysis, privacy and audiovisual content, data storage and management for big multimedia, large scale multimedia search, multimedia tagging using deep learning, interactive interfaces for big multimedia and medical decision support applications using large multimodal data. Addresses the area of multimedia retrieval and pays close attention to the issue of scalability Presents problem driven techniques with solutions that are demonstrated through realistic case studies and user scenarios Includes tables, illustrations, and figures Offers a Wiley-hosted BCS that features links to open source algorithms, data sets and tools Big Data Analytics for Large-Scale Multimedia Search is an excellent book for academics, industrial researchers, and developers interested in big multimedia data search retrieval. It will also appeal to consultants in computer science problems and professionals in the multimedia industry.

Data Warehousing and Mining

Author : John Wang
File Size : 89.99 MB
Format : PDF
Download : 698
Read : 360
Download »
"This collection offers tools, designs, and outcomes of the utilization of data mining and warehousing technologies, such as algorithms, concept lattices, multidimensional data, and online analytical processing. With more than 300 chapters contributed by over 575 experts from around the globe, this authoritative collection will provide libraries with the essential reference on data mining and warehousing"--Provided by publisher.

Advanced Data Mining and Applications

Author : Jianxin Li
File Size : 24.14 MB
Format : PDF
Download : 844
Read : 496
Download »
This book constitutes the proceedings of the 15th International Conference on Advanced Data Mining and Applications, ADMA 2019, held in Dalian, China in November 2019. The 39 full papers presented together with 26 short papers and 2 demo papers were carefully reviewed and selected from 170 submissions. The papers were organized in topical sections named: Data Mining Foundations; Classification and Clustering Methods; Recommender Systems; Social Network and Social Media; Behavior Modeling and User Profiling; Text and Multimedia Mining; Spatial-Temporal Data; Medical and Healthcare Data/Decision Analytics; and Other Applications.

Data Analytics

Author : Andrea Calì
File Size : 58.54 MB
Format : PDF, ePub, Mobi
Download : 852
Read : 1048
Download »
This book constitutes the refereed conference proceedings of the 31st British International Conference on Databases, BICOD 2017 - formerly known as BNCOD (British National Conference on Databases) - held in London, UK, in July 2017. The 17 revised full papers were carefully reviewed and selected from numerous submissions. The papers cover a wide range of topics such as data cleansing, data integration, data wrangling, data mining and knowledge discovery, graph data and knowledge graphs, intelligent data analysis, approximate and flexible querying, data provenance and ontology-based data access. They are organized in the following topical sections: data wrangling and data integration; data analysis and data mining; graph data querying and analysis; multidimensional data and data quality; and distributed and multimedia data management.

Intelligent Analysis of Multimedia Information

Author : Bhattacharyya, Siddhartha
File Size : 59.14 MB
Format : PDF, Kindle
Download : 982
Read : 1168
Download »
Multimedia represents information in novel and varied formats. One of the most prevalent examples of continuous media is video. Extracting underlying data from these videos can be an arduous task. From video indexing, surveillance, and mining, complex computational applications are required to process this data. Intelligent Analysis of Multimedia Information is a pivotal reference source for the latest scholarly research on the implementation of innovative techniques to a broad spectrum of multimedia applications by presenting emerging methods in continuous media processing and manipulation. This book offers a fresh perspective for students and researchers of information technology, media professionals, and programmers.

Exploring Advances in Interdisciplinary Data Mining and Analytics New Trends

Author : Taniar, David
File Size : 73.36 MB
Format : PDF, ePub
Download : 110
Read : 1329
Download »
"This book is an updated look at the state of technology in the field of data mining and analytics offering the latest technological, analytical, ethical, and commercial perspectives on topics in data mining"--Provided by publisher.

Data Mining Concepts Methodologies Tools and Applications

Author : Management Association, Information Resources
File Size : 75.93 MB
Format : PDF, ePub, Docs
Download : 695
Read : 501
Download »
Data mining continues to be an emerging interdisciplinary field that offers the ability to extract information from an existing data set and translate that knowledge for end-users into an understandable way. Data Mining: Concepts, Methodologies, Tools, and Applications is a comprehensive collection of research on the latest advancements and developments of data mining and how it fits into the current technological world.

Data Mining and Knowledge Discovery Handbook

Author : Oded Maimon
File Size : 51.45 MB
Format : PDF, Kindle
Download : 212
Read : 1308
Download »
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Multimedia Big Data Computing for IoT Applications

Author : Sudeep Tanwar
File Size : 24.46 MB
Format : PDF, Kindle
Download : 128
Read : 577
Download »
This book considers all aspects of managing the complexity of Multimedia Big Data Computing (MMBD) for IoT applications and develops a comprehensive taxonomy. It also discusses a process model that addresses a number of research challenges associated with MMBD, such as scalability, accessibility, reliability, heterogeneity, and Quality of Service (QoS) requirements, presenting case studies to demonstrate its application. Further, the book examines the layered architecture of MMBD computing and compares the life cycle of both big data and MMBD. Written by leading experts, it also includes numerous solved examples, technical descriptions, scenarios, procedures, and algorithms.

The Middle East Abstracts and Index

Author :
File Size : 76.69 MB
Format : PDF, Mobi
Download : 270
Read : 699
Download »

Multimedia Technologies in the Internet of Things Environment

Author : Raghvendra Kumar
File Size : 75.38 MB
Format : PDF, Kindle
Download : 319
Read : 477
Download »
This book provides theoretical and practical approach in the area of multimedia and IOT applications and performance analysis. Further, multimedia communication, deep learning models to multimedia data and the new (IOT) approaches are also covered. It addresses the complete functional framework in the area of multimedia data, IOT and smart computing techniques. The book proposes a comprehensive overview of the state-of-the-art research work on multimedia analysis in IOT applications. It bridges the gap between multimedia concepts and solutions by providing the current IOT frameworks, their applications in multimedia analysis, the strengths and limitations of the existing methods, and the future directions in multimedia IOT analytics.

Machine Learning for Intelligent Multimedia Analytics

Author : Pardeep Kumar
File Size : 47.18 MB
Format : PDF
Download : 782
Read : 1112
Download »
This book presents applications of machine learning techniques in processing multimedia large-scale data. Multimedia such as text, image, audio, video, and graphics stands as one of the most demanding and exciting aspects of the information era. The book discusses new challenges faced by researchers in dealing with these large-scale data and also presents innovative solutions to address several potential research problems, e.g., enabling comprehensive visual classification to fill the semantic gap by exploring large-scale data, offering a promising frontier for detailed multimedia understanding, as well as extract patterns and making effective decisions by analyzing the large collection of data.

Medical Big Data and Internet of Medical Things

Author : Aboul Ella Hassanien
File Size : 76.19 MB
Format : PDF, ePub, Mobi
Download : 887
Read : 1140
Download »
Big data and the Internet of Things (IoT) play a vital role in prediction systems used in biological and medical applications, particularly for resolving issues related to disease biology at different scales. Modelling and integrating medical big data with the IoT helps in building effective prediction systems for automatic recommendations of diagnosis and treatment. The ability to mine, process, analyse, characterize, classify and cluster a variety and wide volume of medical data is a challenging task. There is a great demand for the design and development of methods dealing with capturing and automatically analysing medical data from imaging systems and IoT sensors. Addressing analytical and legal issues, and research on integration of big data analytics with respect to clinical practice and clinical utility, architectures and clustering techniques for IoT data processing, effective frameworks for removal of misclassified instances, practicality of big data analytics, methodological and technical issues, potential of Hadoop in managing healthcare data is the need of the hour. This book integrates different aspects used in the field of healthcare such as big data, IoT, soft computing, machine learning, augmented reality, organs on chip, personalized drugs, implantable electronics, integration of bio-interfaces, and wearable sensors, devices, practical body area network (BAN) and architectures of web systems. Key Features: Addresses various applications of Medical Big Data and Internet of Medical Things in real time environment Highlights recent innovations, designs, developments and topics of interest in machine learning techniques for classification of medical data Provides background and solutions to existing challenges in Medical Big Data and Internet of Medical Things Provides optimization techniques and programming models to parallelize the computationally intensive tasks in data mining of medical data Discusses interactions, advantages, limitations, challenges and future perspectives of IoT based remote healthcare monitoring systems. Includes data privacy and security analysis of cryptography methods for the Web of Medical Things (WoMT) Presents case studies on the next generation medical chair, electronic nose and pill cam are also presented.

Beyond Databases Architectures and Structures Paving the Road to Smart Data Processing and Analysis

Author : Stanisław Kozielski
File Size : 53.52 MB
Format : PDF, ePub, Mobi
Download : 210
Read : 1215
Download »
This book constitutes the refereed proceedings of the 15th International Conference entitled Beyond Databases, Architectures and Structures, BDAS 2019, held in Ustroń, Poland, in May 2019. It consists of 26 carefully reviewed papers selected from 69 submissions. The papers are organized in topical sections, namely big data and cloud computing; architectures, structures and algorithms for efficient data processing and analysis; artificial intelligence, data mining and knowledge discovery; image analysis and multimedia mining; bioinformatics and biomedical data analysis; industrial applications; networks and security.

Applied Machine Learning

Author : M GOPAL
File Size : 42.34 MB
Format : PDF
Download : 321
Read : 984
Download »
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Cutting-edge machine learning principles, practices, and applications This comprehensive textbook explores the theoretical under¬pinnings of learning and equips readers with the knowledge needed to apply powerful machine learning techniques to solve challenging real-world problems. Applied Machine Learning shows, step by step, how to conceptualize problems, accurately represent data, select and tune algorithms, interpret and analyze results, and make informed strategic decisions. Presented in a non-rigorous mathematical style, the book covers a broad array of machine learning topics with special emphasis on methods that have been profitably employed. Coverage includes: •Supervised learning•Statistical learning•Learning with support vector machines (SVM)•Learning with neural networks (NN)•Fuzzy inference systems•Data clustering•Data transformations•Decision tree learning•Business intelligence•Data mining•And much more

Creating Value with Social Media Analytics

Author : Gohar F. Khan
File Size : 66.34 MB
Format : PDF, ePub
Download : 302
Read : 750
Download »
Often termed as the ''new gold,'' the vast amount of social media data can be employed to identify which customer behavior and actions create more value. Nevertheless, many brands find it extremely hard to define what the value of social media is and how to capture and create value with social media data.In Creating Value with Social Media Analytics, we draw on developments in social media analytics theories and tools to develop a comprehensive social media value creation framework that allows readers to define, align, capture, and sustain value through social media data. The book offers concepts, strategies, tools, tutorials, and case studies that brands need to align, extract, and analyze a variety of social media data, including text, actions, networks, multimedia, apps, hyperlinks, search engines, and location data. By the end of this book, the readers will have mastered the theories, concepts, strategies, techniques, and tools necessary to extract business value from big social media that help increase brand loyalty, generate leads, drive traffic, and ultimately make sound business decisions. Here is how the book is organized. Chapter 1: Creating Value with Social Media Analytics Chapter 2: Understanding Social Media Chapter 3: Understanding Social Media Analytics Chapter 4: Analytics-Business Alignment Chapter 5: Capturing Value with Network Analytics Chapter 6: Capturing Value with Text Analytics Chapter 7: Capturing Value with Actions Analytics Chapter 8: Capturing Value with Search Engine Analytics Chapter 9: Capturing Value with Location Analytics Chapter 10: Capturing Value with Hyperlinks Analytics Chapter 11: Capturing Value with Mobile Analytics Chapter 12: Capturing Value with Multimedia Analytics Chapter 13: Social Media Analytics CapabilitiesChapter 14: Social Media Security, Privacy, & Ethics The book has a companion site (https://analytics-book.com/), which offers useful instructor resources. Praises for the book "Gohar F. Khan has a flair for simplifying the complexity of social media analytics. Creating Value with Social Media Analytics is a beautifully delineated roadmap to creating and capturing business value through social media. It provides the theories, tools, and creates a roadmap to leveraging social media data for business intelligence purposes. Real world analytics cases and tutorials combined with a comprehensive companion site make this an excellent textbook for both graduate and undergraduate students."-Robin Saunders, Director of the Communications and Information Management Graduate Programs, Bay Path University. "Creating Value with Social Media Analytics offers a comprehensive framework to define, align, capture, and sustain business value through social media data. The book is theoretically grounded and practical, making it an excellent resource for social media analytics courses."-Haya Ajjan, Director & Associate Prof., Elon Center for Organizational Analytics, Elon University. "Gohar Khan is a pioneer in the emerging domain of social media analytics. This latest text is a must-read for business leaders, managers, and academicians, as it provides a clear and concise understanding of business value creation with social media data from a social lens."-Laeeq Khan, Director, Social Media Analytics Research Team, Ohio University. "Whether you are coming from a business, research, science or art background, Creating Value with Social Media Analytics is a brilliant induction resource for those entering the social media analytics industry. The insightful case studies and carefully crafted tutorials are the perfect supplements to help digest the key concepts introduced in each chapter."-Jared Wong, Social Media Data Analyst, Digivizer "It is one of the most comprehensive books on analytics that I have come across recently."-Bobby Swar, Prof. Concordia Uni.

Advances in Knowledge Discovery and Data Mining

Author : Takashi Washio
File Size : 68.90 MB
Format : PDF, ePub, Docs
Download : 854
Read : 957
Download »
This book constitutes the refereed proceedings of the 12th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2008, held in Osaka, Japan, in May 2008. The 37 revised long papers, 40 revised full papers, and 36 revised short papers presented together with 1 keynote talk and 4 invited lectures were carefully reviewed and selected from 312 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas including data mining, data warehousing, machine learning, databases, statistics, knowledge acquisition, automatic scientific discovery, data visualization, causal induction, and knowledge-based systems.