Search results for: real-time-analytics-techniques-to-analyze-and-visualize-streaming-data

Real Time Analytics

Author : Byron Ellis
File Size : 46.41 MB
Format : PDF, ePub, Mobi
Download : 656
Read : 1104
Download »
Data expert Byron Ellis teaches data analysts new technologies to build an effective real-time analytics platform. The book leverages open source and modern commercial tools to show readers how to construct robust, efficient systems that provide real-time analysis in a cost effective manner.

Real Time Analytics

Author : Byron Ellis
File Size : 58.5 MB
Format : PDF, ePub, Mobi
Download : 897
Read : 257
Download »
Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's "recipe" layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website.

Real Time Analytics Techniques to Analyze and Visualize Streaming Data

Author : Agustin Attebery
File Size : 21.11 MB
Format : PDF, Kindle
Download : 624
Read : 1072
Download »
Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Agustin Attebery teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner.

Open Source Software for Statistical Analysis of Big Data Emerging Research and Opportunities

Author : Segall, Richard S.
File Size : 42.96 MB
Format : PDF, ePub, Mobi
Download : 946
Read : 1062
Download »
With the development of computing technologies in today’s modernized world, software packages have become easily accessible. Open source software, specifically, is a popular method for solving certain issues in the field of computer science. One key challenge is analyzing big data due to the high amounts that organizations are processing. Researchers and professionals need research on the foundations of open source software programs and how they can successfully analyze statistical data. Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of cost-free software possibilities for applications within data analysis and statistics with a specific focus on R and Python. Featuring coverage on a broad range of topics such as cluster analysis, time series forecasting, and machine learning, this book is ideally designed for researchers, developers, practitioners, engineers, academicians, scholars, and students who want to more fully understand in a brief and concise format the realm and technologies of open source software for big data and how it has been used to solve large-scale research problems in a multitude of disciplines.

Cognitive Analytics Concepts Methodologies Tools and Applications

Author : Management Association, Information Resources
File Size : 71.3 MB
Format : PDF, Mobi
Download : 556
Read : 878
Download »
Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries, including business and healthcare. It is necessary to develop specific software programs that can analyze and interpret large amounts of data quickly in order to ensure adequate usage and predictive results. Cognitive Analytics: Concepts, Methodologies, Tools, and Applications provides emerging perspectives on the theoretical and practical aspects of data analysis tools and techniques. It also examines the incorporation of pattern management as well as decision-making and prediction processes through the use of data management and analysis. Highlighting a range of topics such as natural language processing, big data, and pattern recognition, this multi-volume book is ideally designed for information technology professionals, software developers, data analysts, graduate-level students, researchers, computer engineers, software engineers, IT specialists, and academicians.

Research Anthology on Big Data Analytics Architectures and Applications

Author : Management Association, Information Resources
File Size : 21.34 MB
Format : PDF, ePub
Download : 173
Read : 666
Download »
Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.

Handbook of Research on Big Data Storage and Visualization Techniques

Author : Segall, Richard S.
File Size : 60.50 MB
Format : PDF, ePub, Docs
Download : 197
Read : 307
Download »
The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. The Handbook of Research on Big Data Storage and Visualization Techniques is a critical scholarly resource that explores big data analytics and technologies and their role in developing a broad understanding of issues pertaining to the use of big data in multidisciplinary fields. Featuring coverage on a broad range of topics, such as architecture patterns, programing systems, and computational energy, this publication is geared towards professionals, researchers, and students seeking current research and application topics on the subject.

Machine Intelligence and Signal Processing

Author : Sonali Agarwal
File Size : 32.22 MB
Format : PDF, Kindle
Download : 590
Read : 246
Download »
This book features selected high-quality research papers presented at the International Conference on Machine Intelligence and Signal Processing (MISP 2019), held at the Indian Institute of Technology, Allahabad, India, on September 7–10, 2019. The book covers the latest advances in the fields of machine learning, big data analytics, signal processing, computational learning theory, and their real-time applications. The topics covered include support vector machines (SVM) and variants like least-squares SVM (LS-SVM) and twin SVM (TWSVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. Further, it discusses the real-time challenges involved in processing big data and adapting the algorithms dynamically to improve the computational efficiency. Lastly, it describes recent developments in processing signals, for instance, signals generated from IoT devices, smart systems, speech, and videos and addresses biomedical signal processing: electrocardiogram (ECG) and electroencephalogram (EEG).

Algorithms and Data Structures for Massive Datasets

Author : Dzejla Medjedovic
File Size : 28.71 MB
Format : PDF, ePub, Mobi
Download : 769
Read : 1022
Download »
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting

Encyclopedia of Information Science and Technology Fifth Edition

Author : Khosrow-Pour D.B.A., Mehdi
File Size : 54.36 MB
Format : PDF, Kindle
Download : 845
Read : 329
Download »
The rise of intelligence and computation within technology has created an eruption of potential applications in numerous professional industries. Techniques such as data analysis, cloud computing, machine learning, and others have altered the traditional processes of various disciplines including healthcare, economics, transportation, and politics. Information technology in today’s world is beginning to uncover opportunities for experts in these fields that they are not yet aware of. The exposure of specific instances in which these devices are being implemented will assist other specialists in how to successfully utilize these transformative tools with the appropriate amount of discretion, safety, and awareness. Considering the level of diverse uses and practices throughout the globe, the fifth edition of the Encyclopedia of Information Science and Technology series continues the enduring legacy set forth by its predecessors as a premier reference that contributes the most cutting-edge concepts and methodologies to the research community. The Encyclopedia of Information Science and Technology, Fifth Edition is a three-volume set that includes 136 original and previously unpublished research chapters that present multidisciplinary research and expert insights into new methods and processes for understanding modern technological tools and their applications as well as emerging theories and ethical controversies surrounding the field of information science. Highlighting a wide range of topics such as natural language processing, decision support systems, and electronic government, this book offers strategies for implementing smart devices and analytics into various professional disciplines. The techniques discussed in this publication are ideal for IT professionals, developers, computer scientists, practitioners, managers, policymakers, engineers, data analysts, and programmers seeking to understand the latest developments within this field and who are looking to apply new tools and policies in their practice. Additionally, academicians, researchers, and students in fields that include but are not limited to software engineering, cybersecurity, information technology, media and communications, urban planning, computer science, healthcare, economics, environmental science, data management, and political science will benefit from the extensive knowledge compiled within this publication.