Search results for: reduction-of-nonlinear-control-systems

Reduction of Nonlinear Control Systems

Author : V.I. Elkin
File Size : 63.76 MB
Format : PDF, Mobi
Download : 883
Read : 711
Download »
Advances in science and technology necessitate the use of increasingly-complicated dynamic control processes. Undoubtedly, sophisticated mathematical models are also concurrently elaborated for these processes. In particular, linear dynamic control systems iJ = Ay + Bu, y E M C ]Rn, U E ]RT, (1) where A and B are constants, are often abandoned in favor of nonlinear dynamic control systems (2) which, in addition, contain a large number of equations. The solution of problems for multidimensional nonlinear control systems en counters serious difficulties, which are both mathematical and technical in nature. Therefore it is imperative to develop methods of reduction of nonlinear systems to a simpler form, for example, decomposition into systems of lesser dimension. Approaches to reduction are diverse, in particular, techniques based on approxi mation methods. In this monograph, we elaborate the most natural and obvious (in our opinion) approach, which is essentially inherent in any theory of math ematical entities, for instance, in the theory of linear spaces, theory of groups, etc. Reduction in our interpretation is based on assigning to the initial object an isomorphic object, a quotient object, and a subobject. In the theory of linear spaces, for instance, reduction consists in reducing to an isomorphic linear space, quotient space, and subspace. Strictly speaking, the exposition of any mathemat ical theory essentially begins with the introduction of these reduced objects and determination of their basic properties in relation to the initial object.

Analysis and Design of Nonlinear Control Systems

Author : Alessandro Astolfi
File Size : 49.3 MB
Format : PDF, Mobi
Download : 804
Read : 715
Download »
This book is a tribute to Prof. Alberto Isidori on the occasion of his 65th birthday. Prof. Isidori’s proli?c, pioneering and high-impact research activity has spanned over 35 years. Throughout his career, Prof. Isidori has developed ground-breaking results, has initiated researchdirections and has contributed towardsthe foundationofnonlinear controltheory.In addition,his dedication to explain intricate issues and di?cult concepts in a simple and rigorous way and to motivate young researchers has been instrumental to the intellectual growth of the nonlinear control community worldwide. The volume collects 27 contributions written by a total of 52 researchers. The principal author of each contribution has been selected among the - searchers who have worked with Prof. Isidori, have in?uenced his research activity, or have had the privilege and honour of being his PhD students. The contributions address a signi?cant number of control topics, including th- retical issues, advanced applications, emerging control directions and tutorial works. The diversity of the areas covered, the number of contributors and their international standing provide evidence of the impact of Prof. Isidori in the control and systems theory communities. The book has been divided into six parts: System Analysis, Optimization Methods, Feedback Design, Regulation, Geometric Methods and Asymptotic Analysis, re?ecting important control areas which have been strongly in- enced and, in some cases, pioneered by Prof. Isidori.

Nonlinear Control Systems 2004

Author : Frank Allgower
File Size : 75.99 MB
Format : PDF, Mobi
Download : 101
Read : 1015
Download »

Model Reduction of Nonlinear Mechanical Systems Via Optimal Projection and Tensor Approximation

Author :
File Size : 36.11 MB
Format : PDF, ePub, Mobi
Download : 480
Read : 1109
Download »
Despite the advent and maturation of high-performance computing, high-fidelity physics-based numerical simulations remain computationally intensive in many fields. As a result, such simulations are often impractical for time-critical applications such as fast-turnaround design, control, and uncertainty quantification. The objective of this thesis is to enable rapid, accurate analysis of high-fidelity nonlinear models to enable their use in time-critical settings. Model reduction presents a promising approach for realizing this goal. This class of methods generates low-dimensional models that preserves key features of the high-fidelity model. Such methods have been shown to generate fast, accurate solutions when applied to specialized problems such as linear time-invariant systems. However, model reduction techniques for highly nonlinear systems has been limited primarily to approaches based on the heuristic proper orthogonal decomposition (POD)--Galerkin approach. These methods often generate inaccurate responses because 1) POD--Galerkin does not generally minimize any measure of the system error, and 2) the POD basis is not constructed to minimize errors in the system's outputs of interest. Furthermore, simulation times for these models usually remain large, as reducing the dimension of a nonlinear system does not necessarily reduce its computational complexity. This thesis presents two model reduction techniques that addresses these shortcomings of the POD--Galerkin method. The first method is a `compact POD' approach for computing the small-dimensional trial basis; this approach is applicable to parameterized static systems. The compact POD basis is constructed using a goal-oriented framework that allows sensitivity derivatives to be employed as snapshots. The second method is a Gauss--Newton with approximated tensors (GNAT) method applicable to nonlinear systems. Similar to other POD-based approaches, the GNAT method first executes high-fidelity simulations during a costly `offline' stage; it computes a POD subspace that optimally represents the state as observed during these simulations. To compute fast, accurate `online' solutions, the method introduces two approximations that satisfy optimality and consistency conditions. First, the method decreases the system dimension by searching for the solutions in the low-dimensional POD subspace. As opposed to performing a Galerkin projection, the method handles the resulting overdetermined system of equations arising at each time step by formulating a least-squares problem; this ensures that a measure of the system error (i.e. the residual) is minimized. Second, the method decreases the model's computational complexity by approximating the residual and Jacobian using the `gappy POD' technique; this requires computing only a few rows of the approximated quantities. For computational mechanics problems, the GNAT method leads to the concept of a sample mesh: the subset of the mesh needed to compute the selected rows of the residual and Jacobian. Because the reduced-order model uses only the sample mesh for computations, the online stage requires minimal computational resources.

Stability of Nonlinear Control Systems

Author : Lefschetz
File Size : 54.36 MB
Format : PDF
Download : 742
Read : 823
Download »
Stability of Nonlinear Control Systems

Lagrangian and Hamiltonian Methods for Nonlinear Control 2003

Author : A Astolfi
File Size : 81.20 MB
Format : PDF
Download : 851
Read : 713
Download »
This is the second of a series of IFAC Workshops initiated in 2000. The first one chaired and organized by Profs. N. Leonard and R. Ortega, was held in Princeton in March 2000. This proceedings volume looks at the role-played by Lagrangian and Hamiltonian methods in disciplines such as classical mechanics, quantum mechanics, fluid dynamics, electrodynamics, celestial mechanics and how such methods can be practically applied in the control community. *Presents and illustrates new approaches to nonlinear control that exploit the Lagrangian and Hamiltonian structure of the system to be controlled *Highlights the important role of Lagrangian and Hamiltonian Structures as design methods

Quantitative Feedback Design of Linear and Nonlinear Control Systems

Author : Oded Yaniv
File Size : 48.59 MB
Format : PDF
Download : 459
Read : 1325
Download »
Quantitative Feedback Design of Linear and Nonlinear Control Systems is a self-contained book dealing with the theory and practice of Quantitative Feedback Theory (QFT). The author presents feedback synthesis techniques for single-input single-output, multi-input multi-output linear time-invariant and nonlinear plants based on the QFT method. Included are design details and graphs which do not appear in the literature, which will enable engineers and researchers to understand QFT in greater depth. Engineers will be able to apply QFT and the design techniques to many applications, such as flight and chemical plant control, robotics, space, vehicle and military industries, and numerous other uses. All of the examples were implemented using Matlab® Version 5.3; the script file can be found at the author's Web site. QFT results in efficient designs because it synthesizes a controller for the exact amount of plant uncertainty, disturbances and required specifications. Quantitative Feedback Design of Linear and Nonlinear Control Systems is a pioneering work that illuminates QFT, making the theory - and practice - come alive.

Nonlinear Control Systems Design 1995

Author : A.J. Krener
File Size : 78.38 MB
Format : PDF, Mobi
Download : 612
Read : 527
Download »
The series of IFAC Symposia on Nonlinear Control Systems provides the ideal forum for leading researchers and practitioners who work in the field to discuss and evaluate the latest research and developments. This publication contains the papers presented at the 3rd IFAC Symposium in the series which was held in Tahoe City, California, USA.

Nonlinear Control Systems

Author : Zoran Vukic
File Size : 90.21 MB
Format : PDF, Mobi
Download : 277
Read : 584
Download »
This text emphasizes classical methods and presents essential analytical tools and strategies for the construction and development of improved design methods in nonlinear control. It offers engineering procedures for the frequency domain, as well as solved examples for clear understanding of control applications in the industrial, electrical, proce

Mathematical Methods for Robust and Nonlinear Control

Author : Matthew C. Turner
File Size : 22.34 MB
Format : PDF, ePub
Download : 332
Read : 162
Download »
The underlying theory on which much modern robust and nonlinear control is based can be difficult to grasp. This volume is a collection of lecture notes presented by experts in advanced control engineering. The book is designed to provide a better grounding in the theory underlying several important areas of control. It is hoped the book will help the reader to apply otherwise abstruse ideas of nonlinear control in a variety of real systems.

Control Systems Theory with Engineering Applications

Author : Sergey E. Lyshevski
File Size : 40.41 MB
Format : PDF, Docs
Download : 482
Read : 446
Download »
Dynamics systems (living organisms, electromechanical and industrial systems, chemical and technological processes, market and ecology, and so forth) can be considered and analyzed using information and systems theories. For example, adaptive human behavior can be studied using automatic feedback control. As an illustrative example, the driver controls a car changing the speed and steer ing wheels using incoming information, such as traffic and road conditions. This book focuses on the most important and manageable topics in applied multivariable control with application to a wide class of electromechanical dynamic systems. A large spectrum of systems, familiar to electrical, mechanical, and aerospace stu dents, engineers, and scholars, are thoroughly studied to build the bridge between theory and practice as well as to illustrate the practical application of control theory through illustrative examples. It is the author's goal to write a book that can be used to teach undergraduate and graduate classes in automatic control and nonlin ear control at electrical, mechanical, and aerospace engineering departments. The book is also addressed to engineers and scholars, and the examples considered allow one to implement the theory in a great variety of industrial systems. The main purpose of this book is to help the reader grasp the nature and significance of multivariable control.

Computer aided Nonlinear Control System Design

Author : Amir Nassirharand
File Size : 64.68 MB
Format : PDF, Kindle
Download : 935
Read : 422
Download »
A systematic computer-aided approach provides a versatile setting for the control engineer to overcome the complications of controller design for highly nonlinear systems. Computer-aided Nonlinear Control System Design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product. Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mechatronic and aerospace design being used to demonstrate the techniques discussed. The author’s commercial MATLAB®-based environment, available separately from insert URL here, can be used to create simulations showing the results of using the computer-aided control system design ideas characterized in the text. Academic researchers and graduate students studying nonlinear control systems and control engineers dealing with nonlinear plant, particularly mechatronic or aerospace systems will find Computer-aided Nonlinear Control System Design to be of great practical assistance adding to their toolbox of techniques for dealing with system nonlinearities. A basic knowledge of calculus, nonlinear analysis and software engineering will enable the reader to get the best from this book.

Absolute Stability of Nonlinear Control Systems

Author : Xiaoxin Liao
File Size : 23.90 MB
Format : PDF, Mobi
Download : 198
Read : 685
Download »
Following the recent developments in the field of absolute stability, Prof. Xiaoxin Liao, in conjunction with Prof. Pei Yu, has created a second edition of his seminal work on the subject. Liao begins with an introduction to the Lurie problem and Lurie control system, before moving on to the simple algebraic sufficient conditions for the absolute stability of autonomous and non-autonomous ODE systems, as well as several special classes of Lurie-type systems. The focus of the book then shifts toward the new results and research that have appeared in the decade since the first edition was published. This book is aimed to be used by undergraduates in the areas of applied mathematics, nonlinear control systems, and chaos control and synchronisation, but may also be useful as a reference for researchers and engineers. The book is self-contained, though a basic knowledge of calculus, linear system and matrix theory, and ordinary differential equations is a prerequisite.

Nonlinear Control Systems

Author : Kuang-Wei Han
File Size : 52.62 MB
Format : PDF, ePub, Docs
Download : 506
Read : 213
Download »

Advanced Control of Chemical Processes 1994

Author : D. Bonvin
File Size : 85.84 MB
Format : PDF, Kindle
Download : 239
Read : 306
Download »
This publication brings together the latest research findings in the key area of chemical process control; including dynamic modelling and simulation - modelling and model validation for application in linear and nonlinear model-based control: nonlinear model-based predictive control and optimization - to facilitate constrained real-time optimization of chemical processes; statistical control techniques - major developments in the statistical interpretation of measured data to guide future research; knowledge-based v model-based control - the integration of theoretical aspects of control and optimization theory with more recent developments in artificial intelligence and computer science.

Nonlinear Control Systems Design 1992

Author : M. Fliess
File Size : 86.52 MB
Format : PDF, ePub
Download : 555
Read : 1087
Download »
This volume represents most aspects of the rich and growing field of nonlinear control. These proceedings contain 78 papers, including six plenary lectures, striking a balance between theory and applications. Subjects covered include feedback stabilization, nonlinear and adaptive control of electromechanical systems, nonholonomic systems. Generalized state space systems, algebraic computing in nonlinear systems theory, decoupling, linearization and model-matching and robust control are also covered.

Robust Control of Linear Systems and Nonlinear Control

Author : M. A. Kaashoek
File Size : 88.4 MB
Format : PDF, ePub
Download : 215
Read : 924
Download »
This volume is the second of the three volume publication containing the proceedings of the 1989 International Symposium on the Mathemat ical Theory of Networks and Systems (MTNS-89), which was held in Amsterdam, The Netherlands, June 19-23, 1989 The International Symposia MTNS focus attention on problems from system and control theory, circuit theory and signal processing, which, in general, require application of sophisticated mathematical tools, such as from function and operator theory, linear algebra and matrix theory, differential and algebraic geometry. The interaction between advanced mathematical methods and practical engineering problems of circuits, systems and control, which is typical for MTNS, turns out to be most effective and is, as these proceedings show, a continuing source of exciting advances. The second volume contains invited papers and a large selection of other symposium presentations in the vast area of robust and nonlinear control. Modern developments in robust control and H-infinity theory, for finite as well as for infinite dimensional systems, are presented. A large part of the volume is devoted to nonlinear control. Special atten tion is paid to problems in robotics. Also the general theory of nonlinear and infinite dimensional systems is discussed. A couple of papers deal with problems of stochastic control and filterina. vi Preface The titles of the two other volumes are: Realization and Modelling in System Theory (volume 1) and Signal Processing, Scattering and Operator Theory, and Numerical Methods (volume 3).

Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems

Author : Thomas Meurer
File Size : 69.91 MB
Format : PDF, ePub
Download : 515
Read : 1290
Download »
This volume presents a well balanced combination of state-of-the-art theoretical results in the field of nonlinear controller and observer design, combined with industrial applications stemming from mechatronics, electrical, (bio–) chemical engineering, and fluid dynamics. The unique combination of results of finite as well as infinite–dimensional systems makes this book a remarkable contribution addressing postgraduates, researchers, and engineers both at universities and in industry. The contributions to this book were presented at the Symposium on Nonlinear Control and Observer Design: From Theory to Applications (SYNCOD), held September 15–16, 2005, at the University of Stuttgart, Germany. The conference and this book are dedicated to the 65th birthday of Prof. Dr.–Ing. Dr.h.c. Michael Zeitz to honor his life – long research and contributions on the fields of nonlinear control and observer design.

Robust Nonlinear Control of Industrial Evaporation Systems

Author : L. C. To
File Size : 51.91 MB
Format : PDF
Download : 968
Read : 330
Download »
Nonlinearities exist in all process control systems. The use of linear control techniques is valid only in a narrow region of operation. Nonlinear control is central to future industrial development. In this book, multivariable nonlinear control techniques based on differential geometry are considered in a pragmatic manner. The book provides a simplified and systematic approach to geometric nonlinear control theory. A case study of an industrial evaporator is used as an example throughout the entire book. Various other examples are also used throughout the text to illustrate the theory. The book successfully demonstrates the superiority and simplicity of the class of controllers studied through simulations and actual plant implementations. The simulations were done using the symbolic computation package MAPLE. Discussions are given on the application of symbolic computation in process engineering. This book is aimed at industrial practitioners and postgraduates in engineering, and will be particularly valuable to practicing engineers who find the theory books on control somewhat heavy going. The insights provided in the book will encourage more industrial implementations of nonlinear controllers, and thereby help to bridge the widening gap between control theory and industrial practice.

Nonlinear Vibration with Control

Author : David Wagg
File Size : 70.79 MB
Format : PDF, Docs
Download : 341
Read : 1175
Download »
The authors discuss the interrelationship of linear vibration theory for multi-degree-of-freedom systems; nonlinear dynamics and chaos; and nonlinear control. No other book covers these areas in the same way, so this is a new perspective on these topics.