Search results for: solid-mechanics-in-engineering

Solid Mechanics in Engineering

Author : Raymond Parnes
File Size : 34.67 MB
Format : PDF, Mobi
Download : 704
Read : 499
Download »
This book provides a systematic, modern introduction to solid mechanics that is carefully motivated by realistic Engineering applications. Based on 25 years of teaching experience, Raymond Parnes uses a wealth of examples and a rich set of problems to build the reader's understanding of the scientific principles, without requiring 'higher mathematics'. Highlights of the book include The use of modern SI units throughout A thorough presentation of the subject stressing basic unifying concepts Comprehensive coverage, including topics such as the behaviour of materials on a phenomenological level Over 600 problems, many of which are designed for solving with MATLAB, MAPLE or MATHEMATICA. Solid Mechanics in Engineering is designed for 2-semester courses in Solid Mechanics or Strength of Materials taken by students in Mechanical, Civil or Aeronautical Engineering and Materials Science and may also be used for a first-year graduate program.

Engineering Solid Mechanics

Author : SalahEldinAhm Bayoumi
File Size : 42.25 MB
Format : PDF, ePub, Mobi
Download : 678
Read : 1038
Download »
Engineering Solid Mechanics bridges the gap between elementary approaches to strength of materials and more advanced, specialized versions on the subject. The book provides a basic understanding of the fundamentals of elasticity and plasticity, applies these fundamentals to solve analytically a spectrum of engineering problems, and introduces advanced topics of mechanics of materials - including fracture mechanics, creep, superplasticity, fiber reinforced composites, powder compacts, and porous solids. Text includes: stress and strain, equilibrium, and compatibility elastic stress-strain relations the elastic problem and the stress function approach to solving plane elastic problems applications of the stress function solution in Cartesian and polar coordinates Problems of elastic rods, plates, and shells through formulating a strain compatibility function as well as applying energy methods Elastic and elastic-plastic fracture mechanics Plastic and creep deformation Inelastic deformation and its applications This book presents the material in an instructive manner, suitable for individual self-study. It emphasizes analytical treatment of the subject, which is essential for handling modern numerical methods as well as assessing and creating software packages. The authors provide generous explanations, systematic derivations, and detailed discussions, supplemented by a vast variety of problems and solved examples. Primarily written for professionals and students in mechanical engineering, Engineering Solid Mechanics also serves persons in other fields of engineering, such as aerospace, civil, and material engineering.

SOLID MECHANICS FOR MATERIALS ENGINEERS Principles and Applications of Mesomechanics

Author : Yunan Prawoto
File Size : 79.24 MB
Format : PDF, Kindle
Download : 458
Read : 1169
Download »

Solid Mechanics

Author : William F. Hosford
File Size : 74.56 MB
Format : PDF, ePub
Download : 130
Read : 1090
Download »
This is a textbook for courses in civil and mechanical engineering that are commonly called Strength of Materials or Mechanics of Materials. The intent of this book is to provide a background in the mechanics of solids for students of mechanical engineering, while limiting the information on why materials behave as they do. It is assumed that the students have already had courses covering materials science and basic statics. Much of the material is drawn from another book by the author, Mechanical Behavior of Materials. To make the text suitable for mechanical engineers, the chapters on slip, dislocations, twinning, residual stresses, and hardening mechanisms have been eliminated and the treatment of ductility viscoelasticity, creep, ceramics, and polymers has been simplified.

Nonlinear Solid Mechanics

Author : Gerhard A. Holzapfel
File Size : 90.26 MB
Format : PDF, ePub, Docs
Download : 555
Read : 449
Download »
Nonlinear Solid Mechanics a Continuum Approach for Engineering Gerhard A. Holzapfel Graz University of Technology, Austria With a modern, comprehensive approach directed towards computational mechanics, this book covers a unique combination of subjects at present unavailable in any other text. It includes vital information on 'variational principles' constituting the cornerstone of the finite element method. In fact this is the only method by which Nonlinear Solid Mechanics is utilized in engineering practice. The book opens with a fundamental chapter on vectors and tensors. The following chapters are based on nonlinear continuum mechanics - an inevitable prerequisite for computational mechanicians. In addition, continuum field theory (applied to a representative sample of hyperelastic materials currently used in nonlinear computations such as incompressible and compressible materials) is presented, as are transversely isotropic materials, composite materials, viscoelastic materials and hyperelastic materials with isotropic damage. Another central chapter is devoted to the thermodynamics of materials, covering both finite thermoelasticity and finite thermoviscoelasticity. Also included are: * an up-to-date list of almost 300 references and a comprehensive index * useful examples and exercises for the student * selected topics of statistical and continuum thermodynamics. Furthermore, the principle of virtual work (in both the material and spatial descriptions) is compared with two and three-field variational principles particularly designed to capture kinematic constraints such as incompressibility. All of the features combined result in an essential text for final year undergraduates, postgraduates and researchers in mechanical, civil and aerospace engineering and applied maths and physics.

Principles of Solid Mechanics

Author : Rowland Richards, Jr.
File Size : 68.32 MB
Format : PDF
Download : 828
Read : 831
Download »
Evolving from more than 30 years of research and teaching experience, Principles of Solid Mechanics offers an in-depth treatment of the application of the full-range theory of deformable solids for analysis and design. Unlike other texts, it is not either a civil or mechanical engineering text, but both. It treats not only analysis but incorporates design along with experimental observation. Principles of Solid Mechanics serves as a core course textbook for advanced seniors and first-year graduate students. The author focuses on basic concepts and applications, simple yet unsolved problems, inverse strategies for optimum design, unanswered questions, and unresolved paradoxes to intrigue students and encourage further study. He includes plastic as well as elastic behavior in terms of a unified field theory and discusses the properties of field equations and requirements on boundary conditions crucial for understanding the limits of numerical modeling. Designed to help guide students with little experimental experience and no exposure to drawing and graphic analysis, the text presents carefully selected worked examples. The author makes liberal use of footnotes and includes over 150 figures and 200 problems. This, along with his approach, allows students to see the full range, non-linear response of structures.

Introduction to Solid Mechanics

Author : Jacob Lubliner
File Size : 85.67 MB
Format : PDF
Download : 800
Read : 984
Download »
This expanded second edition presents in one text the concepts and processes covered in statics and mechanics of materials curricula following a systematic, topically integrated approach. Building on the novel pedagogy of fusing concepts covered in traditional undergraduate courses in rigid-body statics and deformable body mechanics, rather than simply grafting them together, this new edition develops further the authors’ very original treatment of solid mechanics with additional figures, an elaboration on selected solved problems, and additional text as well as a new subsection on viscoelasticity in response to students’ feedback. Introduction to Solid Mechanics: An Integrated Approach, Second Edition, offers a holistic treatment of the depth and breadth of solid mechanics and the inter-relationships of its underlying concepts. Proceeding from first principles to applications, the book stands as a whole greater than the sum of its parts.

Intermediate Solid Mechanics

Author : Marko V. Lubarda
File Size : 53.64 MB
Format : PDF, Mobi
Download : 491
Read : 274
Download »
Based on class-tested material, this concise yet comprehensive treatment of the fundamentals of solid mechanics is ideal for those taking single-semester courses on the subject. It provides interdisciplinary coverage of the key topics, combining solid mechanics with structural design applications, mechanical behavior of materials, and the finite element method. Part I covers basic theory, including the analysis of stress and strain, Hooke's law, and the formulation of boundary-value problems in Cartesian and cylindrical coordinates. Part II covers applications, from solving boundary-value problems, to energy methods and failure criteria, two-dimensional plane stress and strain problems, antiplane shear, contact problems, and much more. With a wealth of solved examples, assigned exercises, and 130 homework problems, and a solutions manual available online, this is ideal for senior undergraduates studying solid mechanics, and graduates taking introductory courses in solid mechanics and theory of elasticity, across aerospace, civil and mechanical engineering, and materials science.

Structure Solid Mechanics and Engineering Design Proceedings of the Civil Engineering Materials Conference Held at Southampton England from the 21st to the 25th of April 1969 Sponsored by the University of Southampton and Others

Author : solid mechanics and engineering design in civil engineering materials International conference on structure (southampton, 1969)
File Size : 60.73 MB
Format : PDF
Download : 748
Read : 534
Download »

Solid Mechanics Part II

Author : M.G.D. Geers
File Size : 31.57 MB
Format : PDF, Kindle
Download : 919
Read : 1260
Download »

Simulation Based Engineering in Solid Mechanics

Author : J.S. Rao
File Size : 79.60 MB
Format : PDF, ePub, Docs
Download : 137
Read : 629
Download »
This book begins with a brief historical perspective of the advent of rotating machinery in 20th century Solid Mechanics and the development of the discipline of the Strength of Materials. High Performance Computing (HPC) and Simulation Based Engineering Science (SBES) have gradually replaced the conventional approach in Design bringing science directly into engineering without approximations. A recap of the required mathematical principles is given. The science of deformation, strain and stress at a point under the application of external traction loads is next presented. Only one-dimensional structures classified as Bars (axial loads), Rods (twisting loads) and Beams (bending loads) are considered in this book. The principal stresses and strains and von Mises stress and strain that used in design of structures are next presented. Lagrangian solution was used to derive the governing differential equations consistent with assumed deformation field and solution for deformations, strains and stresses were obtained. The finite element method most suitable for HPC is derived and the corresponding stiffness matrix for the element is derived. Assembling procedure of these matrices is then described to obtain the system matrices. Worked examples and exercises are given in each chapter. This book brings SBES at entry level allowing young students to quickly adapt to modern design practices.

Classical and Computational Solid Mechanics

Author : Yuan-cheng Fung
File Size : 70.1 MB
Format : PDF
Download : 979
Read : 865
Download »
This invaluable book has been written for engineers and engineering scientists in a style that is readable, precise, concise, and practical. It gives first priority to the formulation of problems, presenting the classical results as the gold standard, and the numerical approach as a tool for obtaining solutions. The classical part is a revision of the well-known text Foundations of Solid Mechanics, with a much-expanded discussion on the theories of plasticity and large elastic deformation with finite strains. The computational part is all new and is aimed at solving many major linear and nonlinear boundary-value problems.

Mechanics and Durability of Solids Solid mechanics

Author : Franz-Josef Ulm
File Size : 39.45 MB
Format : PDF, ePub
Download : 769
Read : 1117
Download »
Intended for a first course in continuum mechanics and constitutive modeling at the senior undergraduate and the introductory graduate level, the focus of this book is on a unified "mechanistic" approach that uses energy concepts for modeling a large range of engineering material behavior. In the presentation, 1D-Think models lead to the development of various fundamentals of continuum mechanics, such as deformation and strain, momentum balance, stress and stress states, thermoelasticity and elasticity bounds, plasticity, and yield design. Along these lines, the bases for a common language among core disciplines in engineering sciences are developed, in a mathematical, yet eloquent manner. The textbook evolved from lecture notes of a one-semester course developed by the authors at the Massachusetts Institute of Technology, as well as in France, Germany, and Brazil. "Key Features of the Book" Parts I and II introduce the two pillars of continuum mechanics, strain and stresses, with a focus on geometrical and physical interpretation, starting with the finite deformation theory. Part III is dedicated to non-dissipative material behavior, with a focus on thermoelasticity and variational methods in elasticity, as well as to its application in heterogeneous material systems. Part IV starts with 1D-plasticity, introducing ideal plasticity, hardening plasticity, and associated energy transformations. It is within the energy approach that the 1D-Think models are extended to 3D, introducing the notion of associated and non-associated plasticity. Finally, the concept of plastic collapse is introduced, leading to the development of the upper- and lower-boundtheorems of limit analysis, which form the basis of modern yield design for engineering structures and material systems. The mathematical developments in each chapter are illustrated through a set of accompanying blackboard exercises of the subject matter, a Training Set for recitation, followed by a broad spectrum of worked exercises suitable for homework, classroom assignments, quizzes, or take-home examinations.

Solid Mechanics

Author : Clive L. Dym
File Size : 83.81 MB
Format : PDF
Download : 128
Read : 159
Download »
Solid Mechanics: A Variational Approach, Augmented Edition presents a lucid and thoroughly developed approach to solid mechanics for students engaged in the study of elastic structures not seen in other texts currently on the market. This work offers a clear and carefully prepared exposition of variational techniques as they are applied to solid mechanics. Unlike other books in this field, Dym and Shames treat all the necessary theory needed for the study of solid mechanics and include extensive applications. Of particular note is the variational approach used in developing consistent structural theories and in obtaining exact and approximate solutions for many problems. Based on both semester and year-long courses taught to undergraduate seniors and graduate students, this text is geared for programs in aeronautical, civil, and mechanical engineering, and in engineering science. The authors’ objective is two-fold: first, to introduce the student to the theory of structures (one- and two-dimensional) as developed from the three-dimensional theory of elasticity; and second, to introduce the student to the strength and utility of variational principles and methods, including briefly making the connection to finite element methods. A complete set of homework problems is included.

Solid Mechanics for Engineers

Author : Liangchi Zhang
File Size : 57.5 MB
Format : PDF
Download : 556
Read : 182
Download »
This text introduces the basics of solid mechanics to engineers from a practical point of view. The aim is to impart understanding from both a physical and a mathematical point of view physical mechanisms of material properties, the theory of solid mechanics, solution methodology and direct engineering applications are therefore presented as an organic whole.

Engineering Applications of Solid Mechanics

Author :
File Size : 30.99 MB
Format : PDF, ePub, Docs
Download : 477
Read : 654
Download »

Mechanics of Solids

Author : Carl Ross
File Size : 81.37 MB
Format : PDF, ePub, Mobi
Download : 951
Read : 1263
Download »
An introduction to the fundamental concepts of solid materials and their properties The primary recommended text of the Council of Engineering Institutions for university undergraduates studying the mechanics of solids New chapters covering revisionary mathematics, geometrical properties of symmetrical sections, bending stresses in beams, composites and the finite element method Free electronic resources and web downloads support the material contained within this book Mechanics of Solids provides an introduction to the behaviour of solid materials and their properties, focusing upon the fundamental concepts and principles of statics and stress analysis. Essential reading for first year undergraduates, the mathematics in this book has been kept as straightforward as possible and worked examples are used to reinforce key concepts. Practical stress and strain scenarios are also covered including stress and torsion, elastic failure, buckling, bending, as well as examples of solids such as thin-walled structures, beams, struts and composites. This new edition includes new chapters on revisionary mathematics, geometrical properties of symmetrical sections, bending stresses in beams, composites, the finite element method, and Ross’s computer programs for smartphones, tablets and computers.

Solutions Manual to accompany Parnes Solid Mechanics in Engineering

Author : Raymond Parnes
File Size : 23.81 MB
Format : PDF, Kindle
Download : 544
Read : 344
Download »
This book provides a systematic, modern introduction to solid mechanics that is carefully motivated by realistic Engineering applications. Based on 25 years of teaching experience, Raymond Parnes uses a wealth of examples and a rich set of problems to build the reader's understanding of the scientific principles, without requiring 'higher mathematics'. Highlights of the book include The use of modern SI units throughout A thorough presentation of the subject stressing basic unifying concepts Comprehensive coverage, including topics such as the behaviour of materials on a phenomenological level Over 600 problems, many of which are designed for solving with MATLAB, MAPLE or MATHEMATICA. Solid Mechanics in Engineering is designed for 2-semester courses in Solid Mechanics or Strength of Materials taken by students in Mechanical, Civil or Aeronautical Engineering and Materials Science and may also be used for a first-year graduate program.

Mechanics of Solids and Structures

Author : Roger T. Fenner
File Size : 90.90 MB
Format : PDF, ePub
Download : 238
Read : 1080
Download »
A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano’s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.

Surface Effects in Solid Mechanics

Author : Holm Altenbach
File Size : 60.13 MB
Format : PDF, ePub
Download : 584
Read : 344
Download »
This book summarizes the actual state of the art and future trends of surface effects in solid mechanics. Surface effects are more and more important in the precise description of the behavior of advanced materials. One of the reasons for this is the well-known from the experiments fact that the mechanical properties are significantly influenced if the structural size is very small like, for example, nanostructures. In this book, various authors study the influence of surface effects in the elasticity, plasticity, viscoelasticity. In addition, the authors discuss all important different approaches to model such effects. These are based on various theoretical frameworks such as continuum theories or molecular modeling. The book also presents applications of the modeling approaches.