Search results for: statistical-data-analysis-explained

Statistical Data Analysis Explained

Author : Clemens Reimann
File Size : 46.46 MB
Format : PDF, ePub, Docs
Download : 435
Read : 188
Download »
Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.

Statistical Data Analysis

Author :
File Size : 49.79 MB
Format : PDF, ePub, Docs
Download : 692
Read : 238
Download »

Statistical Data Analysis Using SAS

Author : Mervyn G. Marasinghe
File Size : 61.23 MB
Format : PDF, ePub
Download : 697
Read : 1307
Download »
The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitable for a second course in applied statistics with every method explained using SAS analysis to illustrate a real-world problem. New to this edition: • Covers SAS v9.2 and incorporates new commands • Uses SAS ODS (output delivery system) for reproduction of tables and graphics output • Presents new commands needed to produce ODS output • All chapters rewritten for clarity • New and updated examples throughout • All SAS outputs are new and updated, including graphics • More exercises and problems • Completely new chapter on analysis of nonlinear and generalized linear models • Completely new appendix Mervyn G. Marasinghe, PhD, is Associate Professor Emeritus of Statistics at Iowa State University, where he has taught courses in statistical methods and statistical computing. Kenneth J. Koehler, PhD, is University Professor of Statistics at Iowa State University, where he teaches courses in statistical methodology at both graduate and undergraduate levels and primarily uses SAS to supplement his teaching.

Statistical Analysis for Environmental Data With R

Author : Barbara Steiger
File Size : 58.1 MB
Format : PDF, ePub
Download : 837
Read : 1194
Download »
For environmental data classical statistical analysis are often not useful which makes it necessary to find new methods to solve the resulting problems. To make it easier to understand the problems, and the solutions, for environmental data, this book tries to avoid mathematical formulae as much as possible. Therfore many things are explained with graphics. For creating the graphs R and the Kola dataset (consists of observations of the Kola Ecogeochemistry Project) were used. This dataset consists of more than 60 chemical elements of northern Finland, Norway and Russia. At the end of the book the functions (for creating the plots) are descriped. This book was written together with P. Filzmoser who wrotes "Statistical Data Analysis Explained" together with C. Reimann, R.G. Garrett and R. Dutter.

Statistical Data Analysis Using SAS

Author : Mervyn G. Marasinghe
File Size : 81.89 MB
Format : PDF, Mobi
Download : 257
Read : 671
Download »
The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitable for a second course in applied statistics with every method explained using SAS analysis to illustrate a real-world problem. New to this edition: • Covers SAS v9.2 and incorporates new commands • Uses SAS ODS (output delivery system) for reproduction of tables and graphics output • Presents new commands needed to produce ODS output • All chapters rewritten for clarity • New and updated examples throughout • All SAS outputs are new and updated, including graphics • More exercises and problems • Completely new chapter on analysis of nonlinear and generalized linear models • Completely new appendix Mervyn G. Marasinghe, PhD, is Associate Professor Emeritus of Statistics at Iowa State University, where he has taught courses in statistical methods and statistical computing. Kenneth J. Koehler, PhD, is University Professor of Statistics at Iowa State University, where he teaches courses in statistical methodology at both graduate and undergraduate levels and primarily uses SAS to supplement his teaching.

Statistics and Data Analysis for Nursing Research

Author : Denise F. Polit
File Size : 49.16 MB
Format : PDF, Docs
Download : 271
Read : 1137
Download »
The second edition of Statistics and Data Analysis for Nursing , uses a conversational style to teach students how to use statistical methods and procedures to analyze research findings. Readers are guided through the complete analysis process from performing a statistical analysis to the rationale behind doing so. Special focus is given to quantitative methods. Other features include management of data, how to "clean" data, and how to work around missing data. New to this edition are updated research examples utilizinging examples from an international mix of studies published by nurse researchers in 2006-2009.

Statistical Data Analysis and Entropy

Author : Nobuoki Eshima
File Size : 28.8 MB
Format : PDF, ePub, Docs
Download : 374
Read : 171
Download »
This book reconsiders statistical methods from the point of view of entropy, and introduces entropy-based approaches for data analysis. Further, it interprets basic statistical methods, such as the chi-square statistic, t-statistic, F-statistic and the maximum likelihood estimation in the context of entropy. In terms of categorical data analysis, the book discusses the entropy correlation coefficient (ECC) and the entropy coefficient of determination (ECD) for measuring association and/or predictive powers in association models, and generalized linear models (GLMs). Through association and GLM frameworks, it also describes ECC and ECD in correlation and regression analyses for continuous random variables. In multivariate statistical analysis, canonical correlation analysis, T2-statistic, and discriminant analysis are discussed in terms of entropy. Moreover, the book explores the efficiency of test procedures in statistical tests of hypotheses using entropy. Lastly, it presents an entropy-based path analysis for structural GLMs, which is applied in factor analysis and latent structure models. Entropy is an important concept for dealing with the uncertainty of systems of random variables and can be applied in statistical methodologies. This book motivates readers, especially young researchers, to address the challenge of new approaches to statistical data analysis and behavior-metric studies.

Statistical Data Analysis for Ocean and Atmospheric Sciences

Author : H. Jean Thiebaux
File Size : 68.50 MB
Format : PDF, ePub
Download : 586
Read : 1101
Download »
Studies of local and global phenomena generate descriptions which require statistical analysis. In this text, H. Jean Thiebaux presents a succinct yet comprehensive review of the fundamentals of statistics as they pertain to studies in oceanic and atmospheric sciences. The text includes an accompanying disk with compatible Minitab sample data. Together, this volume and the included data provide insights into the basics of statistical inference, data analysis, and distributional models of variability. Oceanographers, meteorologists, marine biologists, and other environmental scientists will find this book of great value as a statistical tool for their continuing studies. Specifically designed for students of the ocean and atmospheric sciences Contains a disk containing files of real ocean and atmospheric data, in universal ASCII format, on which many of the exercises are based Provides succinct yet comprehensive coverage Designed to teach students statistical methods with the scientific realism of computer analysis and statistical inference

R For Dummies

Author : Andrie de Vries
File Size : 82.56 MB
Format : PDF, ePub, Docs
Download : 113
Read : 458
Download »
Mastering R has never been easier Picking up R can be tough, even for seasoned statisticians and data analysts. R For Dummies, 2nd Edition provides a quick and painless way to master all the R you'll ever need. Requiring no prior programming experience and packed with tons of practical examples, step-by-step exercises, and sample code, this friendly and accessible guide shows you how to know your way around lists, data frames, and other R data structures, while learning to interact with other programs, such as Microsoft Excel. You'll learn how to reshape and manipulate data, merge data sets, split and combine data, perform calculations on vectors and arrays, and so much more. R is an open source statistical environment and programming language that has become very popular in varied fields for the management and analysis of data. R provides a wide array of statistical and graphical techniques, and has become the standard among statisticians for software development and data analysis. R For Dummies, 2nd Edition takes the intimidation out of working with R and arms you with the knowledge and know-how to master the programming language of choice among statisticians and data analysts worldwide. Covers downloading, installing, and configuring R Includes tips for getting data in and out of R Offers advice on fitting regression models and ANOVA Provides helpful hints for working with graphics R For Dummies, 2nd Edition is an ideal introduction to R for complete beginners, as well as an excellent technical reference for experienced R programmers.

Statistical Analysis in Microbiology

Author : Richard A. Armstrong
File Size : 55.88 MB
Format : PDF, ePub
Download : 349
Read : 364
Download »
This book is aimed primarily at microbiologists who are undertaking research, and who require a basic knowledge of statistics to analyse their experimental data. Computer software employing a wide range of data analysis methods is widely available to experimental scientists. The availability of this software, however, makes it even more essential that microbiologists understand the basic principles of statistics. Statistical analysis of data can be complex with many different methods of approach, each of which applies in a particular experimental circumstance. In addition, most statistical software commercially available is complex and difficult to use. Hence, it is easy to apply an incorrect statistical method to data and to draw the wrong conclusions from an experiment. The purpose of this book is an attempt to present the basic logic of statistics as clearly as possible and therefore, to dispel some of the myths that often surround the subject. The book is presented as a series of 2018Statnotes', many of which were originally published in the 2018Microbiologist' by the Society for Applied Microbiology, each of which deals with various topics including the nature of variables, comparing the means of two or more groups, non-parametric statistics, analysis of variance, correlating variables, and more complex methods such as multiple linear regression and factor analysis. In each case, the relevant statistical methods are illustrated with scenarios and real experimental data drawn from experiments in microbiology. The text will incorporate a glossary of the most commonly used statistical terms and a section to aid the investigator to select the most appropriate test.

Applied Panel Data Analysis for Economic and Social Surveys

Author : Hans-Jürgen Andreß
File Size : 40.49 MB
Format : PDF, ePub, Mobi
Download : 570
Read : 861
Download »
Many economic and social surveys are designed as panel studies, which provide important data for describing social changes and testing causal relations between social phenomena. This textbook shows how to manage, describe, and model these kinds of data. It presents models for continuous and categorical dependent variables, focusing either on the level of these variables at different points in time or on their change over time. It covers fixed and random effects models, models for change scores and event history models. All statistical methods are explained in an application-centered style using research examples from scholarly journals, which can be replicated by the reader through data provided on the accompanying website. As all models are compared to each other, it provides valuable assistance with choosing the right model in applied research. The textbook is directed at master and doctoral students as well as applied researchers in the social sciences, psychology, business administration and economics. Readers should be familiar with linear regression and have a good understanding of ordinary least squares estimation. ​

Applied Multivariate Statistical Analysis

Author : Wolfgang Karl Härdle
File Size : 30.78 MB
Format : PDF, Docs
Download : 803
Read : 373
Download »
Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners. All chapters include practical exercises that highlight applications in different multivariate data analysis fields. All of the examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate Statistical Analysis offers the following new features: A new chapter on Variable Selection (Lasso, SCAD and Elastic Net) All exercises are supplemented by R and MATLAB code that can be found on www.quantlet.de. The practical exercises include solutions that can be found in Härdle, W. and Hlavka, Z., Multivariate Statistics: Exercises and Solutions. Springer Verlag, Heidelberg.

Statistical Data Analysis Handbook

Author : Francis J. Wall
File Size : 44.55 MB
Format : PDF
Download : 485
Read : 194
Download »
It must be emphasized that this is not a text book on statistics. Instead it is a working tool that presents data analysis in clear, concise terms which can be readily understood even by those without formal training in statistics. Following pivotal chapters on the art of analysis, you will find two invaluable reference sections to which you're bound to turn again and again as you make your analyses. The first section gives you the data analyst's-as opposed to the statistician's-eyeview of the basics of a number of fundamental statistical techniques, including random samples, p-values, the analysis of variance, statistical tests, and testing. The second gives you 20 statistical tables that have been especially formatted and expanded to make them far easier to read and apply than conventional statistical tables.

Basic Statistics

Author : Olive Jean Dunn
File Size : 41.43 MB
Format : PDF, ePub
Download : 807
Read : 914
Download »
New Edition of a Classic Guide to Statistical Applications in the Biomedical Sciences In the last decade, there have been significant changes in the way statistics is incorporated into biostatistical, medical, and public health research. Addressing the need for a modernized treatment of these statistical applications, Basic Statistics, Fourth Edition presents relevant, up-to-date coverage of research methodology using careful explanations of basic statistics and how they are used to address practical problems that arise in the medical and public health settings. Through concise and easy-to-follow presentations, readers will learn to interpret and examine data by applying common statistical tools, such as sampling, random assignment, and survival analysis. Continuing the tradition of its predecessor, this new edition outlines a thorough discussion of different kinds of studies and guides readers through the important, related decision-making processes such as determining what information is needed and planning the collections process. The book equips readers with the knowledge to carry out these practices by explaining the various types of studies that are commonly conducted in the fields of medical and public health, and how the level of evidence varies depending on the area of research. Data screening and data entry into statistical programs is explained and accompanied by illustrations of statistical analyses and graphs. Additional features of the Fourth Edition include: A new chapter on data collection that outlines the initial steps in planning biomedical and public health studies A new chapter on nonparametric statistics that includes a discussion and application of the Sign test, the Wilcoxon Signed Rank test, and the Wilcoxon Rank Sum test and its relationship to the Mann-Whitney U test An updated introduction to survival analysis that includes the Kaplan Meier method for graphing the survival function and a brief introduction to tests for comparing survival functions Incorporation of modern statistical software, such as SAS, Stata, SPSS, and Minitab into the presented discussion of data analysis Updated references at the end of each chapter Basic Statistics, Fourth Edition is an ideal book for courses on biostatistics, medicine, and public health at the upper-undergraduate and graduate levels. It is also appropriate as a reference for researchers and practitioners who would like to refresh their fundamental understanding of statistical techniques.

Statistics Applied to Clinical Studies

Author : Ton J. Cleophas
File Size : 45.93 MB
Format : PDF, ePub, Mobi
Download : 132
Read : 816
Download »
Thanks to the omnipresent computer, current statistics can include data files of many thousands of values, and can perform any exploratory analysis in less than seconds. This development, however fascinating, generally does not lead to simple results. We should not forget that clinical studies are, mostly, for confirming prior hypotheses based on sound arguments, and the simplest tests provide the best power and are adequate for such studies. In the past few years the authors of this 5th edition, as teachers and research supervisors in academic and top-clinical facilities, have been able to closely observe the latest developments in the field of clinical data analysis, and they have been able to assess their performance. In this 5th edition the 47 chapters of the previous edition have been maintained and upgraded according to the current state of the art, and 20 novel chapters have been added after strict selection of the most valuable and promising novel methods. The novel methods are explained using practical examples and step-by-step analyses readily accessible for non-mathematicians. All of the novel chapters have been internationally published by the authors in peer-reviewed journal, including the American Journal of Therapeutics, the European Journal of Clinical Investigation, The International journal of Clinical Pharmacology and therapeutics, and other journals, and permission is granted by all of them to use this material in the current book. We should add that the authors are well-qualified in their fields of knowledge. Professor Zwinderman is president-elect of the International Society of Biostatistics, and Professor Cleophas is past-president of the American College of Angiology. From their expertise they should be able to make adequate selections of modern methods for clinical data analysis for the benefit of physicians, students, and investigators. The authors, although from a different discipline, one clinician and one statistician, have been working and publishing together for over 10 years, and their research of statistical methodology can be characterized as a continued effort to demonstrate that statistics is not mathematics but rather a discipline at the interface of biology and mathematics. They firmly believe that any reader can benefit from this clinical approach to statistical data analysis.

Developments in Data Analysis

Author : Anuška Ferligoj
File Size : 47.89 MB
Format : PDF, Docs
Download : 500
Read : 652
Download »

Introducing Data Analysis for Social Scientists

Author : David Rose
File Size : 66.83 MB
Format : PDF, Mobi
Download : 133
Read : 1332
Download »
The revised and updated edition of this highly successful text is designed for social science students taking their first course in quantitative data analysis. It requires no previous knowledge of statistics or computer use, nor any mathematics beyond an elementary level. The principles of analysing data in simple stages are clearly explained, and it provides an introduction to using computers and SPSS, the most widely used statistical package in the social sciences. This second edition includes both WINDOWS and PC+ versions of SPSS, as well as a glossary of statistical terms. The emphasis throughout is on understanding the underlying principles and on illustrating these with simple but realistic examples that stress both the role of theory in social research and the logic of data analysis. The first four parts of the text give students a firm grasp of the logic and language of social research; preparation of data and basic ideas in computing; descriptive statistics for both single variables and bivariate analyses; and inferential statistics. The final part introduces some of the most useful multivariate techniques and discusses the problems and potential of longitudinal studies. Exercises and examples from the British Class Survey and the British Household Panel Study complete the text, and key subsets of the illustrative data is provided on a free floppy disk inside the volume. The complete package is an invaluable beginner's guide for students in sociology, geography, political science, social policy, social psychology, management and related disciplines.

Introductory Statistics with R

Author : Peter Dalgaard
File Size : 56.80 MB
Format : PDF, ePub, Mobi
Download : 397
Read : 1189
Download »
This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.

Applied Univariate Bivariate and Multivariate Statistics Using Python

Author : Daniel J. Denis
File Size : 77.97 MB
Format : PDF, Docs
Download : 357
Read : 462
Download »
Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.

Computational Statistics Data Analysis

Author :
File Size : 68.16 MB
Format : PDF, Mobi
Download : 275
Read : 445
Download »