Search results for: statistical-methods-in-bioinformatics

Statistical Methods in Bioinformatics

Author : Warren J. Ewens
File Size : 74.28 MB
Format : PDF, Docs
Download : 507
Read : 788
Download »
There was a real need for a book that introduces statistics and probability as they apply to bioinformatics. This book presents an accessible introduction to elementary probability and statistics and describes the main statistical applications in the field.

Statistical Methods in Bioinformatics

Author : Warren J. Ewens
File Size : 45.57 MB
Format : PDF
Download : 584
Read : 1132
Download »
Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)

Applications of Statistical and Machine Learning Methods in Bioinformatics

Author : Jaroslaw Meller
File Size : 45.4 MB
Format : PDF, ePub, Mobi
Download : 774
Read : 508
Download »
Statistical and machine learning approaches play an increasingly important role in biomedical research. In the absence of fundamental (first principle-based) models, or because of the computational complexity of such models, statistical and machine learning approaches are being used to identify interesting structures in the data (e.g. patterns in gene expression profiles), correlate these patterns and other «input» attributes with (e.g. medically) relevant outcomes, and to develop predictors that can generalize from known data and make predictions for new data instances. Examples of important applications include structural bioinformatics, in which one of the goals is to predict elements of protein structure from amino acid sequence, or microarray gene expression profiling, in which the goal is to discover interesting patterns in gene expression data and correlate them with clinically relevant phenotypes. This volume includes papers submitted to the BIT 2005 workshop on the Applications of Machine and Statistical Learning Methods in Bioinformatics that took place in September 2005 in Torun, Poland.

Bayesian Modeling in Bioinformatics

Author : Dipak K. Dey
File Size : 29.46 MB
Format : PDF, ePub
Download : 761
Read : 1057
Download »
Bayesian Modeling in Bioinformatics discusses the development and application of Bayesian statistical methods for the analysis of high-throughput bioinformatics data arising from problems in molecular and structural biology and disease-related medical research, such as cancer. It presents a broad overview of statistical inference, clustering, and classification problems in two main high-throughput platforms: microarray gene expression and phylogenic analysis. The book explores Bayesian techniques and models for detecting differentially expressed genes, classifying differential gene expression, and identifying biomarkers. It develops novel Bayesian nonparametric approaches for bioinformatics problems, measurement error and survival models for cDNA microarrays, a Bayesian hidden Markov modeling approach for CGH array data, Bayesian approaches for phylogenic analysis, sparsity priors for protein-protein interaction predictions, and Bayesian networks for gene expression data. The text also describes applications of mode-oriented stochastic search algorithms, in vitro to in vivo factor profiling, proportional hazards regression using Bayesian kernel machines, and QTL mapping. Focusing on design, statistical inference, and data analysis from a Bayesian perspective, this volume explores statistical challenges in bioinformatics data analysis and modeling and offers solutions to these problems. It encourages readers to draw on the evolving technologies and promote statistical development in this area of bioinformatics.

Statistical Methods in Molecular Evolution

Author : Rasmus Nielsen
File Size : 70.41 MB
Format : PDF
Download : 228
Read : 195
Download »
In the field of molecular evolution, inferences about past evolutionary events are made using molecular data from currently living species. With the availability of genomic data from multiple related species, molecular evolution has become one of the most active and fastest growing fields of study in genomics and bioinformatics. Most studies in molecular evolution rely heavily on statistical procedures based on stochastic process modelling and advanced computational methods including high-dimensional numerical optimization and Markov Chain Monte Carlo. This book provides an overview of the statistical theory and methods used in studies of molecular evolution. It includes an introductory section suitable for readers that are new to the field, a section discussing practical methods for data analysis, and more specialized sections discussing specific models and addressing statistical issues relating to estimation and model choice. The chapters are written by the leaders of field and they will take the reader from basic introductory material to the state-of-the-art statistical methods. This book is suitable for statisticians seeking to learn more about applications in molecular evolution and molecular evolutionary biologists with an interest in learning more about the theory behind the statistical methods applied in the field. The chapters of the book assume no advanced mathematical skills beyond basic calculus, although familiarity with basic probability theory will help the reader. Most relevant statistical concepts are introduced in the book in the context of their application in molecular evolution, and the book should be accessible for most biology graduate students with an interest in quantitative methods and theory. Rasmus Nielsen received his Ph.D. form the University of California at Berkeley in 1998 and after a postdoc at Harvard University, he assumed a faculty position in Statistical Genomics at Cornell University. He is currently an Ole Rømer Fellow at the University of Copenhagen and holds a Sloan Research Fellowship. His is an associate editor of the Journal of Molecular Evolution and has published more than fifty original papers in peer-reviewed journals on the topic of this book. From the reviews: "...Overall this is a very useful book in an area of increasing importance." Journal of the Royal Statistical Society "I find Statistical Methods in Molecular Evolution very interesting and useful. It delves into problems that were considered very difficult just several years ago...the book is likely to stimulate the interest of statisticians that are unaware of this exciting field of applications. It is my hope that it will also help the 'wet lab' molecular evolutionist to better understand mathematical and statistical methods." Marek Kimmel for the Journal of the American Statistical Association, September 2006 "Who should read this book? We suggest that anyone who deals with molecular data (who does not?) and anyone who asks evolutionary questions (who should not?) ought to consult the relevant chapters in this book." Dan Graur and Dror Berel for Biometrics, September 2006 "Coalescence theory facilitates the merger of population genetics theory with phylogenetic approaches, but still, there are mostly two camps: phylogeneticists and population geneticists. Only a few people are moving freely between them. Rasmus Nielsen is certainly one of these researchers, and his work so far has merged many population genetic and phylogenetic aspects of biological research under the umbrella of molecular evolution. Although Nielsen did not contribute a chapter to his book, his work permeates all its chapters. This book gives an overview of his interests and current achievements in molecular evolution. In short, this book should be on your bookshelf." Peter Beerli for Evolution, 60(2), 2006

Theory and Mathematical Methods in Bioinformatics

Author : Shiyi Shen
File Size : 66.32 MB
Format : PDF, Mobi
Download : 279
Read : 724
Download »
This monograph addresses, in a systematic and pedagogical manner, the mathematical methods and the algorithms required to deal with the molecularly based problems of bioinformatics. Prominent attention is given to pair-wise and multiple sequence alignment algorithms, stochastic models of mutations, modulus structure theory and protein configuration analysis. Strong links to the molecular structures of proteins, DNA and other biomolecules and their analyses are developed.

Basics of Bioinformatics

Author : Rui Jiang
File Size : 60.30 MB
Format : PDF
Download : 533
Read : 1294
Download »
This book outlines 11 courses and 15 research topics in bioinformatics, based on curriculums and talks in a graduate summer school on bioinformatics that was held in Tsinghua University. The courses include: Basics for Bioinformatics, Basic Statistics for Bioinformatics, Topics in Computational Genomics, Statistical Methods in Bioinformatics, Algorithms in Computational Biology, Multivariate Statistical Methods in Bioinformatics Research, Association Analysis for Human Diseases: Methods and Examples, Data Mining and Knowledge Discovery Methods with Case Examples, Applied Bioinformatics Tools, Foundations for the Study of Structure and Function of Proteins, Computational Systems Biology Approaches for Deciphering Traditional Chinese Medicine, and Advanced Topics in Bioinformatics and Computational Biology. This book can serve as not only a primer for beginners in bioinformatics, but also a highly summarized yet systematic reference book for researchers in this field. Rui Jiang and Xuegong Zhang are both professors at the Department of Automation, Tsinghua University, China. Professor Michael Q. Zhang works at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Introduction to Mathematical Methods in Bioinformatics

Author : Alexander Isaev
File Size : 56.36 MB
Format : PDF, ePub
Download : 455
Read : 545
Download »
This book looks at the mathematical foundations of the models currently in use. All existing books on bioinformatics are software-orientated and they concentrate on computer implementations of mathematical models of biology. This book is unique in the sense that it looks at the mathematical foundations of the models, which are crucial for correct interpretation of the outputs of the models.

Computational Intelligence Methods for Bioinformatics and Biostatistics

Author : Francesco Masulli
File Size : 26.41 MB
Format : PDF, Mobi
Download : 521
Read : 735
Download »
This volume contains a selection of the best contributions delivered at the 5th InternationalMeetingonComputationalIntelligenceMethodsforBioinformatics andBiostatistics(CIBB 2008)held atIIASS “E. R. Caianiello”,Vietri sul Mare, Salerno, Italy during October 3–4, 2008. The CIBB meeting series is organized by the Special Interest Group on Bioinformatics of the International Neural Network Society (INNS) to provide a forum open to researchersfrom di?erent disciplines to present and discuss pr- lems concerning computational techniques in bioinformatics, systems biology and medical informatics with a particular focus on neural networks, machine learning, fuzzy logic, and evolutionary computational methods. Previous CIBB meetings were held with an increasing number of participants within the f- mat of a special session of larger conferences, namely, WIRN 2004 in Perugia, WILF 2005 in Crema, FLINS 2006 in Genoa and WILF 2007 in Camogli. Given the great success of the special session at WILF 2007 that included 26 papers after a strong selection, the 2008 edition of CIBB was organized, at last, as an autonomous conference, governed by its own Steering Committee. CIBB 2008 attracted 69 paper submissions from all over the world. A r- orous peer-review selection process was applied to ultimately select the papers included in the program of the conference. This volume collects the best cont- butions presented at the conference. Moreover, the volume also includes three presentations from keynote speakers. The success of this conference is to be credited to the contribution of many people.

Bayesian Methods in Structural Bioinformatics

Author : Thomas Hamelryck
File Size : 84.62 MB
Format : PDF, Kindle
Download : 296
Read : 435
Download »
This book is an edited volume, the goal of which is to provide an overview of the current state-of-the-art in statistical methods applied to problems in structural bioinformatics (and in particular protein structure prediction, simulation, experimental structure determination and analysis). It focuses on statistical methods that have a clear interpretation in the framework of statistical physics, rather than ad hoc, black box methods based on neural networks or support vector machines. In addition, the emphasis is on methods that deal with biomolecular structure in atomic detail. The book is highly accessible, and only assumes background knowledge on protein structure, with a minimum of mathematical knowledge. Therefore, the book includes introductory chapters that contain a solid introduction to key topics such as Bayesian statistics and concepts in machine learning and statistical physics.

Statistical Bioinformatics with R

Author : Sunil K. Mathur
File Size : 26.65 MB
Format : PDF, ePub
Download : 331
Read : 303
Download »
Statistical Bioinformatics provides a balanced treatment of statistical theory in the context of bioinformatics applications. Designed for a one or two semester senior undergraduate or graduate bioinformatics course, the text takes a broad view of the subject – not just gene expression and sequence analysis, but a careful balance of statistical theory in the context of bioinformatics applications. The inclusion of R & SAS code as well as the development of advanced methodology such as Bayesian and Markov models provides students with the important foundation needed to conduct bioinformatics. Integrates biological, statistical and computational concepts Inclusion of R & SAS code Provides coverage of complex statistical methods in context with applications in bioinformatics Exercises and examples aid teaching and learning presented at the right level Bayesian methods and the modern multiple testing principles in one convenient book

Bioinformatics Computing

Author : Bryan P. Bergeron
File Size : 28.68 MB
Format : PDF, Kindle
Download : 904
Read : 1102
Download »
Comprehensive and concise, this handbook has chapters on computing visualization, large database designs, advanced pattern matching and other key bioinformatics techniques. It is a practical guide to computing in the growing field of Bioinformatics--the study of how information is represented and transmitted in biological systems, starting at the molecular level.

Data Mining in Bioinformatics

Author : Jason T. L. Wang
File Size : 81.82 MB
Format : PDF, ePub, Docs
Download : 520
Read : 1172
Download »
Written especially for computer scientists, all necessary biology is explained. Presents new techniques on gene expression data mining, gene mapping for disease detection, and phylogenetic knowledge discovery.

Integrative Cluster Analysis in Bioinformatics

Author : Basel Abu-Jamous
File Size : 89.5 MB
Format : PDF, Docs
Download : 852
Read : 524
Download »
Clustering techniques are increasingly being put to use in the analysis of high-throughput biological datasets. Novel computational techniques to analyse high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. This book details the complete pathway of cluster analysis, from the basics of molecular biology to the generation of biological knowledge. The book also presents the latest clustering methods and clustering validation, thereby offering the reader a comprehensive review of clustering analysis in bioinformatics from the fundamentals through to state-of-the-art techniques and applications. Key Features: Offers a contemporary review of clustering methods and applications in the field of bioinformatics, with particular emphasis on gene expression analysis Provides an excellent introduction to molecular biology with computer scientists and information engineering researchers in mind, laying out the basic biological knowledge behind the application of clustering analysis techniques in bioinformatics Explains the structure and properties of many types of high-throughput datasets commonly found in biological studies Discusses how clustering methods and their possible successors would be used to enhance the pace of biological discoveries in the future Includes a companion website hosting a selected collection of codes and links to publicly available datasets

Advances in Statistical Bioinformatics

Author : Kim-Anh Do
File Size : 66.48 MB
Format : PDF, ePub, Docs
Download : 764
Read : 915
Download »
"Chapter 1 An introduction to next-generation biological platforms Virginia Mohlere, Wenting Wang, and Ganiraju Manyam The University of Texas. MD Anderson Cancer Center 1.1 Introduction When Sanger and Coulson first described a reliable, efficient method for DNA sequencing in 1975 (Sanger and Coulson, 1975), they made possible the full sequencing of both genes and entire genomes. Although the method was resource-intensive, many institutions invested in the necessary equipment, and Sanger sequencing remained the standard for the next 30 years. Refinement of the process increased read lengths from around 25 to 2 Mohlere, Wang, and Manyam almost 750 base pairs (Schadt et al., 2010, fig. 1). While this greatly increased efficiency and reliability, the Sanger method still required not only large equipment but significant human investment, as the process requires the work of several people. This prompted researchers and companies such as Applied Biosystems to seek improved sequencing techniques and instruments. Starting in the late 2000s, new instruments came on the market that, although they actually decreased read length, lessened run time and could be operated more easily with fewer human resources (Schadt et al., 2010). Despite discoveries that have illuminated new therapeutic targets, clarified the role of specific mutations in clinical response, and yielded new methods for diagnosis and predicting prognosis (Chin et al., 2011), the initial promise of genomic data has largely remained so far unfulfilled. The difficulties are numerous"--

Advances in Multivariate Statistical Methods

Author : Ashis Sengupta
File Size : 56.59 MB
Format : PDF, ePub, Mobi
Download : 256
Read : 345
Download »
This volume contains a collection of research articles on multivariate statistical methods, encompassing both theoretical advances and emerging applications in a variety of scientific disciplines. It serves as a tribute to Professor S N Roy, an eminent statistician who has made seminal contributions to the area of multivariate statistical methods, on his birth centenary. In the area of emerging applications, the topics include bioinformatics, categorical data and clinical trials, econometrics, longitudinal data analysis, microarray data analysis, sample surveys, statistical process control, etc. Researchers, professionals and advanced graduates will find the book an essential resource for modern developments in theory as well as for innovative and emerging important applications in the area of multivariate statistical methods.

Bioinformatics and Computational Biology Solutions Using R and Bioconductor

Author : Robert Gentleman
File Size : 75.60 MB
Format : PDF, ePub, Docs
Download : 753
Read : 849
Download »
Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.

A Concise Guide to Statistics

Author : Hans-Michael Kaltenbach
File Size : 69.72 MB
Format : PDF
Download : 785
Read : 992
Download »
The text gives a concise introduction into fundamental concepts in statistics. Chapter 1: Short exposition of probability theory, using generic examples. Chapter 2: Estimation in theory and practice, using biologically motivated examples. Maximum-likelihood estimation in covered, including Fisher information and power computations. Methods for calculating confidence intervals and robust alternatives to standard estimators are given. Chapter 3: Hypothesis testing with emphasis on concepts, particularly type-I , type-II errors, and interpreting test results. Several examples are provided. T-tests are used throughout, followed important other tests and robust/nonparametric alternatives. Multiple testing is discussed in more depth, and combination of independent tests is explained. Chapter 4: Linear regression, with computations solely based on R. Multiple group comparisons with ANOVA are covered together with linear contrasts, again using R for computations.

Next Generation Microarray Bioinformatics

Author : Junbai Wang
File Size : 47.6 MB
Format : PDF, ePub, Docs
Download : 553
Read : 993
Download »
Recent improvements in the efficiency, quality, and cost of genome-wide sequencing have prompted biologists and biomedical researchers to move away from microarray-based technology to ultra high-throughput, massively parallel genomic sequencing (Next Generation Sequencing, NGS) technology. In Next Generation Microarray Bioinformatics: Methods and Protocols, expert researchers in the field provide techniques to bring together current computational and statistical methods to analyze and interpreting both microarray and NGS data. These methods and techniques include resources for microarray bioinformatics, microarray data analysis, microarray bioinformatics in systems biology, next generation sequencing data analysis, and emerging applications of microarray and next generation sequencing. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Authoritative and practical, Next Generation Microarray Bioinformatics: Methods and Protocols seeks to aid scientists in the further study of this crucially important research into the human DNA.

Bioinformatics Methods And Applications Genomics Proteomics And Drug Discovery 3Rd Ed

Author : S. C. Rastogi
File Size : 80.91 MB
Format : PDF, Mobi
Download : 962
Read : 265
Download »