Search results for: statistical-modeling-and-computation

Statistical Modeling and Computation

Author : Dirk P. Kroese
File Size : 21.20 MB
Format : PDF
Download : 978
Read : 1275
Download »
This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement.​

Complex Models and Computational Methods in Statistics

Author : Matteo Grigoletto
File Size : 76.61 MB
Format : PDF, ePub, Mobi
Download : 339
Read : 155
Download »
The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.

Bayesian Thinking Modeling and Computation

Author :
File Size : 65.56 MB
Format : PDF, ePub, Docs
Download : 414
Read : 984
Download »
This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics

Monte Carlo Simulation Based Statistical Modeling

Author : Ding-Geng (Din) Chen
File Size : 31.38 MB
Format : PDF, ePub
Download : 464
Read : 998
Download »
This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.

Statistical Modeling and Analysis for Complex Data Problems

Author : Pierre Duchesne
File Size : 42.63 MB
Format : PDF, Mobi
Download : 405
Read : 699
Download »
STATISTICAL MODELING AND ANALYSIS FOR COMPLEX DATA PROBLEMS treats some of today’s more complex problems and it reflects some of the important research directions in the field. Twenty-nine authors—largely from Montreal’s GERAD Multi-University Research Center and who work in areas of theoretical statistics, applied statistics, probability theory, and stochastic processes—present survey chapters on various theoretical and applied problems of importance and interest to researchers and students across a number of academic domains. Some of the areas and topics examined in the volume are: an analysis of complex survey data, the 2000 American presidential election in Florida, data mining, estimation of uncertainty for machine learning algorithms, interacting stochastic processes, dependent data & copulas, Bayesian analysis of hazard rates, re-sampling methods in a periodic replacement problem, statistical testing in genetics and for dependent data, statistical analysis of time series analysis, theoretical and applied stochastic processes, and an efficient non linear filtering algorithm for the position detection of multiple targets. The book examines the methods and problems from a modeling perspective and surveys the state of current research on each topic and provides direction for further research exploration of the area.

Monte Carlo Methods in Mechanics of Fluid and Gas

Author : Oleg Mikhaĭlovich Belot︠s︡erkovskiĭ
File Size : 81.18 MB
Format : PDF, ePub
Download : 799
Read : 468
Download »
This book is devoted to analysis of Monte Carlo methods developed in rarefied gas dynamics. Presented is the short history of the development of such methods, described are their main properties, their advantages and deficiencies. It is shown that the contemporary stage in the progress of computational methods cannot be regarded without a complex approach to the preparation of algorithms taking into account all the peculiarities of the problem under consideration, that is, of the physical nature of a process, the mathematical model and the theoretical aspects of computational mathematics and stochastic processes. Thoroughly investigated is the possibility of application of Monte Carlo methods in some kindred areas of science which are non-traditional for the use of statistical modeling (continuous media, turbulence). Considered are the possible directions of development of statistical modeling.

Statistical Modeling of Reliability Structures and Industrial Processes

Author : Ioannis S. Trianntafyllou
File Size : 44.10 MB
Format : PDF, ePub, Mobi
Download : 514
Read : 176
Download »
This reference text introduces advanced topics in the field of reliability engineering, introduces statistical modeling techniques, and probabilistic methods for diverse applications. It comprehensively covers important topics including consecutive-type reliability systems, coherent structures, multi-scale statistical modeling, the performance of reliability structures, big data analytics, prognostics, and health management. It covers real-life applications including optimization of telecommunication networks, complex infrared detecting systems, oil pipeline systems, and vacuum systems in accelerators or spacecraft relay stations. The text will serve as an ideal reference book for graduate students and academic researchers in the fields of industrial engineering, manufacturing science, mathematics, and statistics.

Direction Dependence in Statistical Modeling

Author : Wolfgang Wiedermann
File Size : 23.91 MB
Format : PDF, Mobi
Download : 447
Read : 287
Download »
Covers the latest developments in direction dependence research Direction Dependence in Statistical Modeling: Methods of Analysis incorporates the latest research for the statistical analysis of hypotheses that are compatible with the causal direction of dependence of variable relations. Having particular application in the fields of neuroscience, clinical psychology, developmental psychology, educational psychology, and epidemiology, direction dependence methods have attracted growing attention due to their potential to help decide which of two competing statistical models is more likely to reflect the correct causal flow. The book covers several topics in-depth, including: A demonstration of the importance of methods for the analysis of direction dependence hypotheses A presentation of the development of methods for direction dependence analysis together with recent novel, unpublished software implementations A review of methods of direction dependence following the copula-based tradition of Sungur and Kim A presentation of extensions of direction dependence methods to the domain of categorical data An overview of algorithms for causal structure learning The book's fourteen chapters include a discussion of the use of custom dialogs and macros in SPSS to make direction dependence analysis accessible to empirical researchers.

Time Series

Author : Raquel Prado
File Size : 32.53 MB
Format : PDF, Mobi
Download : 878
Read : 811
Download »
Focusing on Bayesian approaches and computations using analytic and simulation-based methods for inference, Time Series: Modeling, Computation, and Inference, Second Edition integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling, analysis and forecasting, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and contacts research frontiers in multivariate time series modeling and forecasting. It presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. It explores the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian formulations and computation, including use of computations based on Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. It illustrates the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, environmental science, and finance. Along with core models and methods, the book represents state-of-the art approaches to analysis and forecasting in challenging time series problems. It also demonstrates the growth of time series analysis into new application areas in recent years, and contacts recent and relevant modeling developments and research challenges. New in the second edition: Expanded on aspects of core model theory and methodology. Multiple new examples and exercises. Detailed development of dynamic factor models. Updated discussion and connections with recent and current research frontiers.

Statistical Modeling in Biomedical Research

Author : Yichuan Zhao
File Size : 68.25 MB
Format : PDF, Kindle
Download : 698
Read : 316
Download »
This edited collection discusses the emerging topics in statistical modeling for biomedical research. Leading experts in the frontiers of biostatistics and biomedical research discuss the statistical procedures, useful methods, and their novel applications in biostatistics research. Interdisciplinary in scope, the volume as a whole reflects the latest advances in statistical modeling in biomedical research, identifies impactful new directions, and seeks to drive the field forward. It also fosters the interaction of scholars in the arena, offering great opportunities to stimulate further collaborations. This book will appeal to industry data scientists and statisticians, researchers, and graduate students in biostatistics and biomedical science. It covers topics in: Next generation sequence data analysis Deep learning, precision medicine, and their applications Large scale data analysis and its applications Biomedical research and modeling Survival analysis with complex data structure and its applications.