Search results for: vlsi-compatible-implementations-for-artificial-neural-networks

VLSI Compatible Implementations for Artificial Neural Networks

Author : Sied Mehdi Fakhraie
File Size : 47.95 MB
Format : PDF, ePub, Docs
Download : 330
Read : 173
Download »
This book introduces several state-of-the-art VLSI implementations of artificial neural networks (ANNs). It reviews various hardware approaches to ANN implementations: analog, digital and pulse-coded. The analog approach is emphasized as the main one taken in the later chapters of the book. The area of VLSI implementation of ANNs has been progressing for the last 15 years, but not at the fast pace originally predicted. Several reasons have contributed to the slow progress, with the main one being that VLSI implementation of ANNs is an interdisciplinaly area where only a few researchers, academics and graduate students are willing to venture. The work of Professors Fakhraie and Smith, presented in this book, is a welcome addition to the state-of-the-art and will greatly benefit researchers and students working in this area. Of particular value is the use of experimental results to backup extensive simulations and in-depth modeling. The introduction of a synapse-MOS device is novel. The book applies the concept to a number of applications and guides the reader through more possible applications for future work. I am confident that the book will benefit a potentially wide readership. M. I. Elmasry University of Waterloo Waterloo, Ontario Canada Preface Neural Networks (NNs), generally defined as parallel networks that employ a large number of simple processing elements to perform computation in a distributed fashion, have attracted a lot of attention in the past fifty years. As the result. many new discoveries have been made.

VLSI Artificial Neural Networks Engineering

Author : Mohamed I. Elmasry
File Size : 42.49 MB
Format : PDF, ePub, Docs
Download : 276
Read : 989
Download »
Engineers have long been fascinated by how efficient and how fast biological neural networks are capable of performing such complex tasks as recognition. Such networks are capable of recognizing input data from any of the five senses with the necessary accuracy and speed to allow living creatures to survive. Machines which perform such complex tasks as recognition, with similar ac curacy and speed, were difficult to implement until the technological advances of VLSI circuits and systems in the late 1980's. Since then, the field of VLSI Artificial Neural Networks (ANNs) have witnessed an exponential growth and a new engineering discipline was born. Today, many engineering curriculums have included a course or more on the subject at the graduate or senior under graduate levels. Since the pioneering book by Carver Mead; "Analog VLSI and Neural Sys tems", Addison-Wesley, 1989; there were a number of excellent text and ref erence books on the subject, each dealing with one or two topics. This book attempts to present an integrated approach of a single research team to VLSI ANNs Engineering.

Engineering Applications of Bio Inspired Artificial Neural Networks

Author : Jose Mira
File Size : 86.37 MB
Format : PDF, ePub, Mobi
Download : 590
Read : 221
Download »
This book constitutes, together with its compagnion LNCS 1606, the refereed proceedings of the International Work-Conference on Artificial and Neural Networks, IWANN'99, held in Alicante, Spain in June 1999. The 91 revised papers presented were carefully reviewed and selected for inclusion in the book. This volume is devoted to applications of biologically inspired artificial neural networks in various engineering disciplines. The papers are organized in parts on artificial neural nets simulation and implementation, image processing, and engineering applications.

Switched Current Design and Implementation of Oversampling A D Converters

Author : Nianxiong Tan
File Size : 81.42 MB
Format : PDF
Download : 992
Read : 764
Download »
Switched-Current Design and Implementation of Oversampling A/D Converters discusses the switched-current (SI) technique and its application in oversampling A/D converters design. The SI technique is an analog sampled-data technique that fully exploits the digital CMOS process. Compared with the traditional switched-capacitor (SC) technique, the SI technique has both pros and cons that are highlighted in the book. With the consideration of similarity and difference of SI and SC techniques, oversampling A/D converter architectures are tailored and optimized for SI design and implementation in the book. Switched-Current Design and Implementation of Oversampling A/D Converters emphasizes the practical aspects of SI circuits without tedious mathematical derivations, and is full of circuit design and implementation examples. There are more than 10 different chips included in the book, demonstrating the high-speed (over 100 MHz) and ultra-low-voltage (1.2 V) operation of SI circuits and systems in standard digital CMOS processes. Therefore, the book is of special value as a practical guide for designing SI circuits and SI oversampling A/D converters. Switched-Current Design and Implementation of Oversampling A/D Converters serves as an excellent reference for analog designers, especially A/D converter designers, and is of interest to digital designers for real-time signal processing who need A/D interfaces. The book may also be used as a text for advanced courses on the subject.

Knowledge Based Intelligent Information and Engineering Systems

Author : Bruno Apolloni
File Size : 21.76 MB
Format : PDF, ePub, Docs
Download : 560
Read : 1317
Download »
This book is part of a three-volume set that constitutes the refereed proceedings of the 11th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2007. Coverage in this first volume includes artificial neural networks and connectionists systems, fuzzy and neuro-fuzzy systems, evolutionary computation, machine learning and classical AI, agent systems, and information engineering and applications in ubiquitous computing environments.

VLSI compatible Implementations for Artificial Neural Networks microform

Author : Sied Mehdi Fakhraie
File Size : 63.86 MB
Format : PDF, Kindle
Download : 210
Read : 565
Download »

Design of Modulators for Oversampled Converters

Author : Feng Wang
File Size : 32.21 MB
Format : PDF, Kindle
Download : 890
Read : 410
Download »
Oversampled A/D converters have become very popular in recent years. Some of their advantages include relaxed requirements for anti-alias filters, relaxed requirements for component matching, high resolution and compatibility with digital VLSI technology. There is a significant amount of literature discussing the principle, theory and implementation of various oversampled converters. Such converters are likely to continue to proliferate in the foreseeable future. Additionally, more recently there has been great interest in low voltage and low power circuit design. New design techniques have been proposed for both the digital domain and the analog domain. Both trends point to the importance of the low-power design of oversampled A/D converters. Unfortunately, there has been no systematic study of the optimal design of modulators for oversampled converters. Design has generally focused on new architectures with little attention being paid to optimization. The goal of Design of Modulators for Oversampled Converters is to develop a methodology for the optimal design of modulators in oversampled converters. The primary focus of the presentation is on minimizing power consumption and understanding and limiting the nonlinearities that result in such converters. Design of Modulators for Oversampled Converters offers a quantitative justification for the various design tradeoffs and serves as a guide for designing low-power highly linear oversampled converters. Design of Modulators for Oversampled Converters will serve as a valuable guide for circuit design practitioners, university researchers and graduate students who are interested in this fast-moving area.

Symbolic Analysis in Analog Integrated Circuit Design

Author : Henrik Floberg
File Size : 75.34 MB
Format : PDF, ePub, Mobi
Download : 782
Read : 682
Download »
Symbolic Analysis in Analog Integrated Circuit Design provides an introduction to computer-aided circuit analysis and presents systematic methods for solving linear (i.e. small-signal) and nonlinear circuit problems, which are illustrated by concrete examples. Computer-aided symbolic circuit analysis is useful in analog integrated circuit design. Analytic expressions for the network transfer functions contain information that is not provided by a numerical simulation result. However, these expressions are generally extremely long and difficult to interpret; therefore, it is necessary to be able to approximate them guided by the magnitude of the individual circuit parameters. Engineering has been described as `the art of making approximations'. The inclusion of symbolic analysis in analog circuit design reduces the implied risk of ambiguity during the approximation process. A systematic method based on the nullor concept is used to obtain the basic feedback transistor amplifier configurations. Approximate expressions for the locations of poles and zeros for linear networks are obtained using the extended pole-splitting technique. An unusual feature in Symbolic Analysis in Analog Integrated Circuit Design is the consistent use of the transadmittance element with finite (linear or nonlinear) or infinite (i.e. nullor) gain as the only requisite circuit element. The describing function method is used to obtain approximate symbolic expressions for the harmonic distortion generated by a soft or hard transconductance nonlinearity embedded in an arbitrary linear network. The design and implementation of a program (i.e. CASCA) for symbolic analysis of time-continuous networks is described. The algorithms can also be used to solve other linear problems, e.g. the analysis of time-discrete switched-capacitor networks. Symbolic Analysis in Analog Integrated Circuit Design serves as an excellent resource for students and researchers as well as for industry designers who want to familiarize themselves with circuit analysis. This book may also be used for advanced courses on the subject.

CMOS Wireless Transceiver Design

Author : Jan Crols
File Size : 87.58 MB
Format : PDF, ePub
Download : 545
Read : 864
Download »
The world of wireless communications is changing very rapidly since a few years. The introduction of digital data communication in combination with digital signal process ing has created the foundation for the development of many new wireless applications. High-quality digital wireless networks for voice communication with global and local coverage, like the GSM and DECT system, are only faint and early examples of the wide variety of wireless applications that will become available in the remainder of this decade. The new evolutions in wireless communications set new requirements for the trans ceivers (transmitter-receivers). Higher operating frequencies, a lower power consump tion and a very high degree of integration, are new specifications which ask for design approaches quite different from the classical RF design techniques. The integrata bility and power consumption reduction of the digital part will further improve with the continued downscaling of technologies. This is however completely different for the analog transceiver front-end, the part which performs the interfacing between the antenna and the digital signal processing. The analog front-end's integratability and power consumption are closely related to the physical limitations of the transceiver topology and not so much to the scaling of the used technology. Chapter 2 gives a detailed study of the level of integration in current transceiver realization and analyzes their limitations. In chapter 3 of this book the complex signal technique for the analysis and synthesis of multi-path receiver and transmitter topologies is introduced.

Top Down Design of High Performance Sigma Delta Modulators

Author : Fernando Medeiro
File Size : 78.47 MB
Format : PDF, Kindle
Download : 375
Read : 235
Download »
The interest for :I:~ modulation-based NO converters has significantly increased in the last years. The reason for that is twofold. On the one hand, unlike other converters that need accurate building blocks to obtain high res olution, :I:~ converters show low sensitivity to the imperfections of their building blocks. This is achieved through extensive use of digital signal pro cessing - a desirable feature regarding the implementation of NO interfaces in mainstream CMOS technologies which are better suited for implementing fast, dense, digital circuits than accurate analog circuits. On the other hand, the number of applications with industrial interest has also grown. In fact, starting from the earliest in the audio band, today we can find :I:~ converters in a large variety of NO interfaces, ranging from instrumentation to commu nications. These advances have been supported by a number of research works that have lead to a considerably large amount of published papers and books cov ering different sub-topics: from purely theoretical aspects to architecture and circuit optimization. However, so much material is often difficultly digested by those unexperienced designers who have been committed to developing a :I:~ converter, mainly because there is a lack of methodology. In our view, a clear methodology is necessary in :I:~ modulator design because all related tasks are rather hard.